需求人群:
["视觉化商品搜索","文档分类","图像搜索"]
产品特色:
使用 AutoML 或自定义模型训练机器学习模型,从而对图像进行分类
使用预训练的 API,检测对象、辨别手写文本,并构建有价值的图像元数据
轻松与 BigQuery、Cloud Functions 和您的相机集成,实现端到端体验
浏览量:40
最新流量情况
月访问量
35787.29k
平均访问时长
00:08:29
每次访问页数
9.30
跳出率
36.70%
流量来源
直接访问
60.77%
自然搜索
22.58%
邮件
0.09%
外链引荐
13.04%
社交媒体
2.29%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
巴西
6.40%
英国
3.60%
印度
9.02%
俄罗斯
3.92%
美国
20.75%
借助 AutoML Vision 从图像中发掘有价值的信息、利用预训练的 Vision API 模型,或使用 Vertex AI Vision 创建计算机视觉应用
Vision AI 提供了三种计算机视觉产品,包括 Vertex AI Vision、自定义机器学习模型和 Vision API。您可以使用这些产品从图像中提取有价值的信息,进行图像分类和搜索,并创建各种计算机视觉应用。Vision AI 提供简单易用的界面和功能强大的预训练模型,满足不同用户需求。
一站式OCR代理,快速从图像中生成洞见。
TurboLens是一个集OCR、计算机视觉和生成式AI于一体的全功能平台,它能够自动化地从非结构化图像中快速生成洞见,简化工作流程。产品背景信息显示,TurboLens旨在通过其创新的OCR技术和AI驱动的翻译及分析套件,从印刷和手写文档中提取定制化的洞见。此外,TurboLens还提供了数学公式和表格识别功能,将图像转换为可操作的数据,并将数学公式翻译成LaTeX格式,表格转换为Excel格式。产品价格方面,TurboLens提供免费和付费两种计划,满足不同用户的需求。
生成任何3D和4D场景的先进框架
GenXD是一个专注于3D和4D场景生成的框架,它利用日常生活中常见的相机和物体运动来联合研究一般的3D和4D生成。由于社区缺乏大规模的4D数据,GenXD首先提出了一个数据策划流程,从视频中获取相机姿态和物体运动强度。基于此流程,GenXD引入了一个大规模的现实世界4D场景数据集:CamVid-30K。通过利用所有3D和4D数据,GenXD框架能够生成任何3D或4D场景。它提出了多视图-时间模块,这些模块分离相机和物体运动,无缝地从3D和4D数据中学习。此外,GenXD还采用了掩码潜在条件,以支持多种条件视图。GenXD能够生成遵循相机轨迹的视频以及可以提升到3D表示的一致3D视图。它在各种现实世界和合成数据集上进行了广泛的评估,展示了GenXD在3D和4D生成方面与以前方法相比的有效性和多功能性。
视觉语言模型,结合图像和文本信息进行智能处理。
Aquila-VL-2B模型是一个基于LLava-one-vision框架训练的视觉语言模型(VLM),选用Qwen2.5-1.5B-instruct模型作为语言模型(LLM),并使用siglip-so400m-patch14-384作为视觉塔。该模型在自建的Infinity-MM数据集上进行训练,包含约4000万图像-文本对。该数据集结合了从互联网收集的开源数据和使用开源VLM模型生成的合成指令数据。Aquila-VL-2B模型的开源,旨在推动多模态性能的发展,特别是在图像和文本的结合处理方面。
AI驱动的电子元件分类器,智能组件管理的终极解决方案。
Vanguard-s/Electronic-Component-Sorter是一个利用机器学习和人工智能自动化识别和分类电子元件的项目。该项目通过深度学习模型,能够将电子元件分为电阻、电容、LED、晶体管等七大类,并通过OCR技术进一步获取元件的详细信息。它的重要性在于减少人工分类错误,提高效率,确保安全性,并帮助视觉障碍人士更便捷地识别电子元件。
AIGC 应用快速构建平台
派欧算力云大模型 API 提供易于集成的各模态 API 服务,包括大语言模型、图像、音频、视频等,旨在帮助用户轻松构建专属的 AIGC 应用。该平台拥有丰富的模型资源,支持个性化需求的模型训练和托管,同时保证用户私有模型的保密性。它以高性价比、高吞吐量和高性能推理引擎为特点,适用于多种 AI 应用场景,如聊天机器人、总结摘要、小说生成器等。
先进的目标检测和跟踪模型
Ultralytics YOLO11是基于之前YOLO系列模型的进一步发展,引入了新特性和改进,以提高性能和灵活性。YOLO11旨在快速、准确、易于使用,非常适合广泛的目标检测、跟踪、实例分割、图像分类和姿态估计任务。
先进的多模态AI模型家族
Molmo是一个开放的、最先进的多模态AI模型家族,旨在通过学习指向其感知的内容,实现与物理和虚拟世界的丰富互动,为下一代应用程序提供行动和交互的能力。Molmo通过学习指向其感知的内容,实现了与物理和虚拟世界的丰富互动,为下一代应用程序提供行动和交互的能力。
开源计算机视觉库
OpenCV是一个跨平台的开源计算机视觉和机器学习软件库,它提供了一系列编程功能,包括但不限于图像处理、视频分析、特征检测、机器学习等。该库广泛应用于学术研究和商业项目中,因其强大的功能和灵活性而受到开发者的青睐。
基于重力视角坐标恢复世界定位的人体运动
GVHMR是一种创新的人体运动恢复技术,它通过重力视角坐标系统来解决从单目视频中恢复世界定位的人体运动的问题。该技术能够减少学习图像-姿态映射的歧义,并且避免了自回归方法中连续图像的累积误差。GVHMR在野外基准测试中表现出色,不仅在准确性和速度上超越了现有的最先进技术,而且其训练过程和模型权重对公众开放,具有很高的科研和实用价值。
专注于计算机视觉和机器学习领域的研究与创新的博客网站
Shangchen Zhou 是一位在计算机视觉和机器学习领域有着深厚研究背景的博士生,他的工作主要集中在视觉内容增强、编辑和生成AI(2D和3D)上。他的研究成果广泛应用于图像和视频的超分辨率、去模糊、低光照增强等领域,为提升视觉内容的质量和用户体验做出了重要贡献。
AI工具目录,发现最佳AI工具
Aixploria是一个专注于人工智能的网站,提供在线AI工具目录,帮助用户发现和选择满足其需求的最佳AI工具。该平台以简化的设计和直观的搜索引擎,让用户能够轻松地通过关键词搜索,找到各种AI应用。Aixploria不仅提供工具列表,还发布关于每个AI如何工作的文章,帮助用户理解最新趋势和最受欢迎的应用。此外,Aixploria还设有实时更新的'top 10 AI'专区,方便用户快速了解每个类别中的顶级AI工具。Aixploria适合所有对AI感兴趣的人,无论是初学者还是专家,都能在这里找到有价值的信息。
4D重建模型,快速生成动画对象
L4GM是一个4D大型重建模型,能够从单视图视频输入中快速生成动画对象。它采用了一种新颖的数据集,包含多视图视频,这些视频展示了Objaverse中渲染的动画对象。该数据集包含44K种不同的对象和110K个动画,从48个视角渲染,生成了12M个视频,总共包含300M帧。L4GM基于预训练的3D大型重建模型LGM构建,该模型能够从多视图图像输入中输出3D高斯椭球。L4GM输出每帧的3D高斯Splatting表示,然后将其上采样到更高的帧率以实现时间平滑。此外,L4GM还添加了时间自注意力层,以帮助学习时间上的一致性,并使用每个时间步的多视图渲染损失来训练模型。
一种用于跨领域视频帧中对象匹配的通用模型。
MASA是一个用于视频帧中对象匹配的先进模型,它能够处理复杂场景中的多目标跟踪(MOT)。MASA不依赖于特定领域的标注视频数据集,而是通过Segment Anything Model(SAM)丰富的对象分割,学习实例级别的对应关系。MASA设计了一个通用适配器,可以与基础的分割或检测模型配合使用,实现零样本跟踪能力,即使在复杂领域中也能表现出色。
Google 一款轻量级、高效能的AI模型,专为大规模高频任务设计。
Gemini 1.5 Flash是Google DeepMind团队推出的最新AI模型,它通过'蒸馏'过程从更大的1.5 Pro模型中提炼出核心知识和技能,以更小、更高效的模型形式提供服务。该模型在多模态推理、长文本处理、聊天应用、图像和视频字幕生成、长文档和表格数据提取等方面表现出色。它的重要性在于为需要低延迟和低成本服务的应用提供了解决方案,同时保持了高质量的输出。
提供关于人工智能的最佳资源,学习机器学习、数据科学、自然语言处理等。
AI Online Course是一个互动学习平台,提供清晰简明的人工智能介绍,使复杂的概念易于理解。它涵盖机器学习、深度学习、计算机视觉、自动驾驶、聊天机器人等方面的知识,并强调实际应用和技术优势。
一种用于图像和文本数据的先进机器学习模型,专注于数据质量和透明度。
MetaCLIP是一个开源的机器学习模型,用于图像和文本的联合表示学习。它通过一个简单算法对CLIP数据进行筛选,不依赖于先前模型的过滤,从而提高了数据的质量和透明度。MetaCLIP的主要贡献包括无过滤的数据筛选、透明的训练数据分布、可扩展的算法和标准化的CLIP训练设置。该模型强调数据质量的重要性,并提供预训练模型,以支持研究人员和开发者进行控制实验和公平比较。
智能视频对象分割技术
SAM是一个先进的视频对象分割模型,它结合了光学流动和RGB信息,能够发现并分割视频中的移动对象。该模型在单对象和多对象基准测试中均取得了显著的性能提升,同时保持了对象的身份一致性。
为开源世界构建高质量视频数据集的计划
Open-Sora-Plan是一个开源项目,旨在为开源社区提供高质量的视频数据集。该项目已经爬取并处理了40258个来自开源网站的高质量视频,涵盖了60%的横屏视频。同时还提供了自动生成的密集字幕,供机器学习等应用使用。该项目免费开源,欢迎大家共同参与和支持。
Jax 库,计算机视觉研究及更多
Scenic 是一个专注于基于注意力模型的计算机视觉研究的代码库,提供优化训练和评估循环、基线模型等功能,适用于图像、视频、音频等多模态数据。提供 SOTA 模型和基线,支持快速原型设计,价格免费。
学习网络中的三维动物
3D Fauna是一个通过学习 2D 网络图片来构建三维动物模的方法。它通过引入语义相关的模型集合来解决模型泛化的挑战,并提供了一个新的大规模数据集。在推理过程中,给定一张任意四足动物的图片,我们的模型可以在几秒内通过前馈方式重建出一个有关联的三维网格模型。
机器人图像渲染的新发展
Wild2Avatar是一个用于渲染被遮挡的野外单目视频中的人类外观的神经渲染方法。它可以在真实场景下渲染人类,即使障碍物可能会阻挡相机视野并导致部分遮挡。该方法通过将场景分解为三部分(遮挡物、人类和背景)来实现,并使用特定的目标函数强制分离人类与遮挡物和背景,以确保人类模型的完整性。
打造人工智能未来
Anthropic是一款人工智能平台,通过深度学习和自然语言处理等技术,提供先进的人工智能解决方案。我们的产品具有强大的功能和优势,可应用于图像识别、自然语言处理、机器学习等领域。定价灵活合理,定位为帮助用户实现人工智能应用的目标。无论您是开发者、研究人员还是企业,Anthropic都能满足您的需求。
无代码AI构建器,AI不是魔法,而是ModularMind。
ModularMind是一款无代码AI构建器,提供强大的人工智能功能,包括自然语言处理、图像识别、机器学习等。它能够帮助用户快速构建AI模型,无需编码。ModularMind还提供灵活的定价方案,适用于个人用户和企业用户。它定位于帮助用户解决AI开发难题,提高工作效率。
AI Vision for instant visual analysis
Chooch AI Vision Platform是一款AI视觉平台,通过AI算法实现对图像和视频的实时分析和识别。该平台可帮助企业快速检测和分析成千上万种视觉对象、图像或动作,并在图像被识别出时立即采取行动。具有高度精确和高效的操作,能够提升业务运营性能。Chooch AI Vision Platform提供多种预训练的AI模型,可快速部署并支持在云端或边缘设备上使用。定价根据具体需求定制。
AI研究论文记忆助手
PaperClip是AI研究者的第二大脑,用于机器学习、计算机视觉和自然语言处理论文的回顾和记忆。它可以帮助您记忆来自机器学习、计算机视觉和自然语言处理论文的详细信息,包括重要发现和论文细节。您可以从任何地方记忆,无论是AI研究论文、机器学习博客文章还是新闻报道。PaperClip的AI在本地运行,不会向任何服务器发送数据。它可以将您的记忆保存在本地,并提供简单的搜索功能,让您随时找回重要发现。PaperClip支持离线搜索,即使没有互联网连接也可以进行搜索。您还可以随时清理您的数据,一键重置保存的信息。PaperClip以Svelte和Hugo Duprez为基础开发。
© 2024 AIbase 备案号:闽ICP备08105208号-14