需求人群:
"目标受众包括商业AI开发者、业余爱好者和学生。这款产品适合他们,因为它提供了一个经济实惠且性能强大的平台,用于开发和实现AI项目,特别是在生成型AI和机器人技术领域。"
使用场景示例:
基于检索增强生成的LLM聊天机器人的开发
构建视觉AI代理
部署基于AI的机器人
产品特色:
提供高达1.7倍的生成型AI推理性能提升
性能提升至67 INT8 TOPS,比前代产品提升70%
内存带宽提升至102GB/s,比前代产品提升50%
支持最多四台相机,提供比前代产品更高的分辨率和帧率
基于NVIDIA Ampere架构GPU和6核Arm CPU,支持多AI应用并行处理和高性能推理
适用于开发生成型AI、机器人学或计算机视觉技能
提供广泛的生成型AI软件生态系统和社区支持
使用教程:
1. 购买NVIDIA Jetson Orin Nano Super Developer Kit
2. 访问NVIDIA Jetson AI Lab获取支持和教程
3. 使用Jetson社区提供的资源和项目灵感
4. 利用NVIDIA AI软件,如Isaac、Metropolis和Holoscan
5. 通过NVIDIA Omniverse Replicator生成合成数据
6. 使用NVIDIA TAO Toolkit微调预训练的AI模型
7. 通过Jetson ecosystem partners获取额外的AI和系统软件支持
8. 升级JetPack SDK以解锁增强性能
浏览量:17
最新流量情况
月访问量
892.76k
平均访问时长
00:00:32
每次访问页数
1.44
跳出率
72.69%
流量来源
直接访问
30.85%
自然搜索
54.77%
邮件
0.07%
外链引荐
9.55%
社交媒体
4.45%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
3.37%
德国
3.55%
英国
4.92%
印度
7.00%
美国
25.97%
NVIDIA推出的最经济的生成型AI超级计算机
NVIDIA Jetson Orin Nano Super Developer Kit是一款紧凑型生成型AI超级计算机,提供了更高的性能和更低的价格。它支持从商业AI开发者到业余爱好者和学生的广泛用户群体,提供了1.7倍的生成型AI推理性能提升,67 INT8 TOPS的性能提升,以及102GB/s的内存带宽提升。这款产品是开发基于检索增强生成的LLM聊天机器人、构建视觉AI代理或部署基于AI的机器人的理想选择。
从穿着人身上生成平铺布料的模型
TryOffAnyone是一个用于从穿着人身上生成平铺布料的深度学习模型。该模型能够将穿着衣物的人的图片转换成布料平铺图,这对于服装设计、虚拟试衣等领域具有重要意义。它通过深度学习技术,实现了高度逼真的布料模拟,使得用户可以更直观地预览衣物的穿着效果。该模型的主要优点包括逼真的布料模拟效果和较高的自动化程度,可以减少实际试衣过程中的时间和成本。
一站式大模型算法、模型及优化工具开源项目
FlagAI是由北京智源人工智能研究院推出的一站式、高质量开源项目,集成了全球各种主流大模型算法技术以及多种大模型并行处理和训练加速技术。它支持高效训练和微调,旨在降低大模型开发和应用的门槛,提高开发效率。FlagAI涵盖了多个领域明星模型,如语言大模型OPT、T5,视觉大模型ViT、Swin Transformer,多模态大模型CLIP等。智源研究院也持续将“悟道2.0”“悟道3.0”大模型项目成果开源至FlagAI,目前该项目已经加入Linux基金会,吸引全球科研力量共同创新、共同贡献。
视频分析工具,结合Llama视觉模型和OpenAI Whisper进行本地视频描述生成。
video-analyzer是一个视频分析工具,它结合了Llama的11B视觉模型和OpenAI的Whisper模型,通过提取关键帧、将它们输入视觉模型以获取细节,并结合每个帧的细节和可用的转录内容来描述视频中发生的事情。这个工具代表了计算机视觉、音频转录和自然语言处理的结合,能够生成视频内容的详细描述。它的主要优点包括完全本地运行无需云服务或API密钥、智能提取视频关键帧、使用OpenAI的Whisper进行高质量音频转录、使用Ollama和Llama3.2 11B视觉模型进行帧分析,以及生成自然语言描述的视频内容。
从日常动态视频中快速、准确地估计相机和密集结构
MegaSaM是一个系统,它允许从动态场景的单目视频中准确、快速、稳健地估计相机参数和深度图。该系统突破了传统结构从运动和单目SLAM技术的局限,这些技术通常假设输入视频主要包含静态场景和大量视差。MegaSaM通过深度视觉SLAM框架的精心修改,能够扩展到真实世界中复杂动态场景的视频,包括具有未知视场和不受限制相机路径的视频。该技术在合成和真实视频上的广泛实验表明,与先前和并行工作相比,MegaSaM在相机姿态和深度估计方面更为准确和稳健,运行时间更快或相当。
通用型物理引擎,用于机器人学和物理AI应用
Genesis是一个全面物理仿真平台,专为机器人学、具身AI和物理AI应用设计。它是一个从头构建的通用物理引擎,能够模拟广泛的材料和物理现象。作为一个轻量级、超快速、Pythonic且用户友好的机器人仿真平台,它还具备强大的真实感渲染系统和将自然语言描述转换为各种数据模态的生成数据引擎。Genesis通过其核心物理引擎的集成,进一步增强了上层的生成代理框架,旨在为机器人学及其它领域实现全自动数据生成。
Phi开放模型,强大、低成本、低延迟的小语言模型。
Phi Open Models是微软Azure提供的一款小型语言模型(SLMs),以其卓越的性能、低成本和低延迟重新定义了小语言模型的可能性。Phi模型在保持较小体积的同时,提供了强大的AI能力,降低了资源消耗,并确保了成本效益的生成型AI部署。Phi模型的开发遵循了微软的AI原则,包括责任、透明度、公平性、可靠性和安全性、隐私和安全性以及包容性。
视频非可见物体分割与内容补全的先进研究
这是一个由卡内基梅隆大学提出的视频非可见物体分割和内容补全的模型。该模型通过条件生成任务的方式,利用视频生成模型的基础知识,对视频中的可见物体序列进行处理,以生成包括可见和不可见部分的物体掩码和RGB内容。该技术的主要优点包括能够处理高度遮挡的情况,并且能够对变形物体进行有效的处理。此外,该模型在多个数据集上的表现均优于现有的先进方法,特别是在物体被遮挡区域的非可见分割上,性能提升高达13%。
高质量身份保留的人像动画合成工具。
StableAnimator是首个端到端身份保留的视频扩散框架,能够在不进行后处理的情况下合成高质量视频。该技术通过参考图像和一系列姿势进行条件合成,确保了身份一致性。其主要优点在于无需依赖第三方工具,适合需要高质量人像动画的用户。
基于条件扩散模型的人类-物体交互合成技术
Controllable Human-Object Interaction Synthesis (CHOIS) 是一种先进的技术,它能够根据语言描述、初始物体和人类状态以及稀疏物体路径点来同时生成物体运动和人类运动。这项技术对于模拟真实的人类行为至关重要,尤其在需要精确手-物体接触和由地面支撑的适当接触的场景中。CHOIS通过引入物体几何损失作为额外的监督信息,以及在训练扩散模型的采样过程中设计指导项来强制执行接触约束,从而提高了生成物体运动与输入物体路径点之间的匹配度,并确保了交互的真实性。
从单张图片重建逼真的3D人体模型
PSHuman是一个创新的框架,它利用多视图扩散模型和显式重构技术,从单张图片中重建出逼真的3D人体模型。这项技术的重要性在于它能够处理复杂的自遮挡问题,并且在生成的面部细节上避免了几何失真。PSHuman通过跨尺度扩散模型联合建模全局全身形状和局部面部特征,实现了细节丰富且保持身份特征的新视角生成。此外,PSHuman还通过SMPL-X等参数化模型提供的身体先验,增强了不同人体姿态下的跨视图身体形状一致性。PSHuman的主要优点包括几何细节丰富、纹理保真度高以及泛化能力强。
基于文本生成姿态并进一步生成图像的模型
text-to-pose是一个研究项目,旨在通过文本描述生成人物姿态,并利用这些姿态生成图像。该技术结合了自然语言处理和计算机视觉,通过改进扩散模型的控制和质量,实现了从文本到图像的生成。项目背景基于NeurIPS 2024 Workshop上发表的论文,具有创新性和前沿性。该技术的主要优点包括提高图像生成的准确性和可控性,以及在艺术创作和虚拟现实等领域的应用潜力。
未来演示控制的手势识别技术
Phantomy AI是一款利用计算机视觉软件,通过屏幕对象检测和手势识别技术,增强用户交互和演示的先进工具。它无需额外硬件,即可通过直观的手势控制屏幕,为用户提供了一种无需接触的交互方式。Phantomy AI的主要优点包括高精准的屏幕对象检测、基于手势的控制、流畅的幻灯片导航、增强的用户体验和广泛的应用场景。产品背景信息显示,Phantomy AI由AI工程师Almajd Ismail开发,他拥有软件开发和全栈开发的背景。关于价格和定位,页面上没有提供具体信息。
面向开放世界的检测与理解统一视觉模型
DINO-X是一个以物体感知为核心的视觉大模型,具备开集检测、智能问答、人体姿态、物体计数、服装换色等核心能力。它不仅能识别已知目标,还能灵活应对未知类别,凭借先进算法,模型具备出色的适应性和鲁棒性,能够精准应对各种不可预见的挑战,提供针对复杂视觉数据的全方位解决方案。DINO-X的应用场景广泛,包括机器人、农业、零售行业、安防监控、交通管理、制造业、智能家居、物流与仓储、娱乐媒体等,是DeepDataSpace公司在计算机视觉技术领域的旗舰产品。
数据标注平台,助力AI项目高效管理数据标注项目。
Data Annotation Platform是一个端到端的数据标注平台,允许用户上传计算机视觉数据,选择标注类型,并下载结果,无需任何最低承诺。该平台支持多种数据标注类型,包括矩形、多边形、3D立方体、关键点、语义分割、实例分割和泛视觉分割等,服务于AI项目经理、机器学习工程师、AI初创公司和研究团队,解决他们在数据标注过程中遇到的挑战。平台以其无缝执行、成本计算器、指令生成器、免费任务、API接入和团队访问等特点,为用户提供了一个简单、高效、成本效益高的数据标注解决方案。
基于Segment-Anything-2和Segment-Anything-1的自动全视频分割工具
AutoSeg-SAM2是一个基于Segment-Anything-2(SAM2)和Segment-Anything-1(SAM1)的自动全视频分割工具,它能够对视频中的每个对象进行追踪,并检测可能的新对象。该工具的重要性在于它能够提供静态分割结果,并利用SAM2对这些结果进行追踪,这对于视频内容分析、对象识别和视频编辑等领域具有重要意义。产品背景信息显示,它是由zrporz开发的,并且是基于Facebook Research的SAM2和zrporz自己的SAM1。价格方面,由于这是一个开源项目,因此它是免费的。
一站式OCR代理,快速从图像中生成洞见。
TurboLens是一个集OCR、计算机视觉和生成式AI于一体的全功能平台,它能够自动化地从非结构化图像中快速生成洞见,简化工作流程。产品背景信息显示,TurboLens旨在通过其创新的OCR技术和AI驱动的翻译及分析套件,从印刷和手写文档中提取定制化的洞见。此外,TurboLens还提供了数学公式和表格识别功能,将图像转换为可操作的数据,并将数学公式翻译成LaTeX格式,表格转换为Excel格式。产品价格方面,TurboLens提供免费和付费两种计划,满足不同用户的需求。
3D网格生成与语言模型的统一
LLaMA-Mesh是一项将大型语言模型(LLMs)预训练在文本上扩展到生成3D网格的能力的技术。这项技术利用了LLMs中已经嵌入的空间知识,并实现了对话式3D生成和网格理解。LLaMA-Mesh的主要优势在于它能够将3D网格的顶点坐标和面定义表示为纯文本,允许与LLMs直接集成而无需扩展词汇表。该技术的主要优点包括能够从文本提示生成3D网格、按需产生交错的文本和3D网格输出,以及理解和解释3D网格。LLaMA-Mesh在保持强大的文本生成性能的同时,实现了与从头开始训练的模型相当的网格生成质量。
使用先进计算机视觉算法进行自动、准确计数的应用。
CountAnything是一个前沿应用,利用先进的计算机视觉算法实现自动、准确的物体计数。它适用于多种场景,包括工业、养殖业、建筑、医药和零售等。该产品的主要优点在于其高精度和高效率,能够显著提升计数工作的准确性和速度。产品背景信息显示,CountAnything目前已开放给非中国大陆地区用户使用,并且提供免费试用。
利用NVIDIA AI构建视频搜索和摘要代理
NVIDIA AI Blueprint for Video Search and Summarization是一个基于NVIDIA NIM微服务和生成式AI模型的参考工作流程,用于构建能够理解自然语言提示并执行视觉问题回答的视觉AI代理。这些代理可以部署在工厂、仓库、零售店、机场、交通路口等多种场景中,帮助运营团队从自然交互中生成的丰富洞察中做出更好的决策。
生成任何3D和4D场景的先进框架
GenXD是一个专注于3D和4D场景生成的框架,它利用日常生活中常见的相机和物体运动来联合研究一般的3D和4D生成。由于社区缺乏大规模的4D数据,GenXD首先提出了一个数据策划流程,从视频中获取相机姿态和物体运动强度。基于此流程,GenXD引入了一个大规模的现实世界4D场景数据集:CamVid-30K。通过利用所有3D和4D数据,GenXD框架能够生成任何3D或4D场景。它提出了多视图-时间模块,这些模块分离相机和物体运动,无缝地从3D和4D数据中学习。此外,GenXD还采用了掩码潜在条件,以支持多种条件视图。GenXD能够生成遵循相机轨迹的视频以及可以提升到3D表示的一致3D视图。它在各种现实世界和合成数据集上进行了广泛的评估,展示了GenXD在3D和4D生成方面与以前方法相比的有效性和多功能性。
业界领先的开源大型混合专家模型
Tencent-Hunyuan-Large(混元大模型)是由腾讯推出的业界领先的开源大型混合专家(MoE)模型,拥有3890亿总参数和520亿激活参数。该模型在自然语言处理、计算机视觉和科学任务等领域取得了显著进展,特别是在处理长上下文输入和提升长上下文任务处理能力方面表现出色。混元大模型的开源,旨在激发更多研究者的创新灵感,共同推动AI技术的进步和应用。
用于双手操作的扩散基础模型
RDT-1B是一个参数量达到1B(目前最大)的模仿学习扩散变换器,预训练在超过1M(目前最大)的多机器人情节上。给定语言指令和多达三个视图的RGB图像,RDT可以预测接下来的64个机器人动作。RDT与几乎所有现代移动操作器兼容,包括单臂到双臂、关节到末端执行器、位置到速度,甚至包括轮式运动。该模型在6K+(最大的之一)自收集的双手情节上进行了微调,并部署在ALOHA双臂机器人上。它在灵巧性、零样本泛化能力和少样本学习方面达到了最先进的性能。
从单张图片或文本提示生成高质量3D资产
Flex3D是一个两阶段流程,能够从单张图片或文本提示生成高质量的3D资产。该技术代表了3D重建领域的最新进展,可以显著提高3D内容的生成效率和质量。Flex3D的开发得到了Meta的支持,并且团队成员在3D重建和计算机视觉领域有着深厚的背景。
去除镜面反射,揭示隐藏纹理
StableDelight是一个先进的模型,专注于从纹理表面去除镜面反射。它基于StableNormal的成功,后者专注于提高单目法线估计的稳定性。StableDelight通过应用这一概念来解决去除反射的挑战性任务。训练数据包括Hypersim、Lumos以及来自TSHRNet的各种镜面高光去除数据集。此外,我们在扩散训练过程中整合了多尺度SSIM损失和随机条件尺度技术,以提高一步扩散预测的清晰度。
一种在野外环境中分解图像为反射率和照明效果的技术。
Colorful Diffuse Intrinsic Image Decomposition 是一种图像处理技术,它能够将野外拍摄的照片分解为反照率、漫反射阴影和非漫反射残留部分。这项技术通过逐步移除单色照明和Lambertian世界假设,实现了对图像中多彩漫反射阴影的估计,包括多个照明和场景中的二次反射,同时模型了镜面反射和可见光源。这项技术对于图像编辑应用,如去除镜面反射和像素级白平衡,具有重要意义。
图像条件扩散模型的微调工具
diffusion-e2e-ft是一个开源的图像条件扩散模型微调工具,它通过微调预训练的扩散模型来提高特定任务的性能。该工具支持多种模型和任务,如深度估计和法线估计,并提供了详细的使用说明和模型检查点。它在图像处理和计算机视觉领域具有重要应用,能够显著提升模型在特定任务上的准确性和效率。
OpenCV的额外模块库,用于开发和测试新的图像处理功能。
opencv_contrib是OpenCV的额外模块库,用于开发和测试新的图像处理功能。这些模块通常在API稳定、经过充分测试并被广泛接受后,才会被整合到OpenCV的核心库中。该库允许开发者使用最新的图像处理技术,推动计算机视觉领域的创新。
© 2024 AIbase 备案号:闽ICP备08105208号-14