需求人群:
"目标受众主要是计算机视觉领域的研究人员和开发者,以及需要进行视觉位置识别的机器人和自动驾驶系统的开发者。Revisit Anything 提供了一套完整的视觉识别解决方案,能够帮助他们提高系统的识别准确性和效率。"
使用场景示例:
在自动驾驶车辆中使用Revisit Anything进行环境识别
在机器人导航系统中利用Revisit Anything进行路径规划
在地理信息系统中使用Revisit Anything进行图像匹配
产品特色:
使用SAM和DINO技术进行图像特征提取
支持多种数据集,包括Baidu、VPAir、pitts、17places等
提供预处理脚本,简化数据准备流程
支持生成VLAD聚类中心
支持PCA降维提取
提供完整的训练和测试脚本,方便进行实验
支持离线结果保存,便于后续分析
使用教程:
1. 设置数据集存储路径
2. 准备数据集并重命名文件夹
3. 下载并放置预处理数据
4. 运行DINO/SAM提取脚本提取图像特征
5. (可选)生成VLAD聚类中心
6. 运行PCA提取脚本进行降维
7. 运行主SegVLAD管道脚本获取最终结果
8. (可选)保存描述符以供离线召回计算
浏览量:32
最新流量情况
月访问量
222
平均访问时长
00:00:00
每次访问页数
1.00
跳出率
43.89%
流量来源
直接访问
33.60%
自然搜索
44.97%
邮件
0.17%
外链引荐
14.13%
社交媒体
5.37%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
越南
100.00%
视觉位置识别通过图像片段检索
Revisit Anything 是一个视觉位置识别系统,通过图像片段检索技术,能够识别和匹配不同图像中的位置。它结合了SAM(Spatial Attention Module)和DINO(Distributed Knowledge Distillation)技术,提高了视觉识别的准确性和效率。该技术在机器人导航、自动驾驶等领域具有重要的应用价值。
多模态大型语言模型,优化视觉识别和图像推理。
Llama-3.2-90B-Vision是Meta公司发布的一款多模态大型语言模型(LLM),专注于视觉识别、图像推理、图片描述和回答有关图片的一般问题。该模型在常见的行业基准测试中超越了许多现有的开源和封闭的多模态模型。
视觉语言模型高效文档检索工具
ColPali 是一种基于视觉语言模型的高效文档检索工具,它通过直接嵌入文档页面图像的方式来简化文档检索流程。ColPali 利用了最新的视觉语言模型技术,特别是 PaliGemma 模型,通过晚交互机制实现多向量检索,从而提高检索性能。这一技术不仅加快了索引速度,降低了查询延迟,而且在检索包含视觉元素的文档方面表现出色,例如图表、表格和图像。ColPali 的出现,为文档检索领域带来了一种新的“视觉空间检索”范式,有助于提高信息检索的效率和准确性。
基于强化学习技术的视觉思考模型,理科测试行业领先
Kimi视觉思考模型k1是基于强化学习技术打造的AI模型,原生支持端到端图像理解和思维链技术,并将能力扩展到数学之外的更多基础科学领域。在数学、物理、化学等基础科学学科的基准能力测试中,k1模型的表现超过了全球标杆模型。k1模型的发布标志着AI在视觉理解和思考能力上的新突破,尤其在处理图像信息和基础科学问题上展现出色的表现。
视觉语言模型,结合图像和文本信息进行智能处理。
Aquila-VL-2B模型是一个基于LLava-one-vision框架训练的视觉语言模型(VLM),选用Qwen2.5-1.5B-instruct模型作为语言模型(LLM),并使用siglip-so400m-patch14-384作为视觉塔。该模型在自建的Infinity-MM数据集上进行训练,包含约4000万图像-文本对。该数据集结合了从互联网收集的开源数据和使用开源VLM模型生成的合成指令数据。Aquila-VL-2B模型的开源,旨在推动多模态性能的发展,特别是在图像和文本的结合处理方面。
多语言嵌入模型,用于视觉文档检索。
vdr-2b-multi-v1 是一款由 Hugging Face 推出的多语言嵌入模型,专为视觉文档检索设计。该模型能够将文档页面截图编码为密集的单向量表示,无需 OCR 或数据提取流程即可搜索和查询多语言视觉丰富的文档。基于 MrLight/dse-qwen2-2b-mrl-v1 开发,使用自建的多语言查询 - 图像对数据集进行训练,是 mcdse-2b-v1 的升级版,性能更强大。模型支持意大利语、西班牙语、英语、法语和德语,拥有 50 万高质量样本的开源多语言合成训练数据集,具有低 VRAM 和快速推理的特点,在跨语言检索方面表现出色。
智能图像识别服务
云识别是一款提供智能图像识别服务的产品。通过使用先进的深度学习算法,云识别能够实时准确地识别和分类图像中的物体、场景和文字。优势包括高准确率、快速响应、支持多种图像格式和多平台集成。定价根据使用量和功能定制。主要功能包括图像分类、物体检测、场景识别和文字识别等。适用于各种图像处理场景,如图像搜索、内容过滤、自动驾驶、安防监控等。
借助 AutoML Vision 从图像中发掘有价值的信息、利用预训练的 Vision API 模型,或使用 Vertex AI Vision 创建计算机视觉应用
Vision AI 提供了三种计算机视觉产品,包括 Vertex AI Vision、自定义机器学习模型和 Vision API。您可以使用这些产品从图像中提取有价值的信息,进行图像分类和搜索,并创建各种计算机视觉应用。Vision AI 提供简单易用的界面和功能强大的预训练模型,满足不同用户需求。
学习联合视觉表示通过对齐前投影
Video-LLaVA 是一个用于学习联合视觉表示的模型,通过对齐前投影进行训练。它可以将视频和图像表示进行对齐,从而实现更好的视觉理解。该模型具有高效的学习和推理速度,适用于视频处理和视觉任务。
一款AI视觉语言模型,提供图像分析和描述服务。
InternVL是一个AI视觉语言模型,专注于图像分析和描述。它通过深度学习技术,能够理解和解释图像内容,为用户提供准确的图像描述和分析结果。InternVL的主要优点包括高准确性、快速响应和易于集成。该技术背景基于最新的人工智能研究,致力于提高图像识别的效率和准确性。目前,InternVL提供免费试用,具体价格和定位需要根据用户需求定制。
学习野外音频视觉数据的机器人操控
ManiWAV是一个研究项目,旨在通过野外的音频和视觉数据学习机器人操控技能。它通过收集人类演示的同步音频和视觉反馈,并通过相应的策略接口直接从演示中学习机器人操控策略。该模型展示了通过四个接触丰富的操控任务来证明其系统的能力,这些任务需要机器人被动地感知接触事件和模式,或主动地感知物体表面的材料和状态。此外,该系统还能够通过学习多样化的野外人类演示来泛化到未见过的野外环境中。
一种通过视觉上下文学习的通用图像生成框架。
VisualCloze 是一个通过视觉上下文学习的通用图像生成框架,旨在解决传统任务特定模型在多样化需求下的低效率问题。该框架不仅支持多种内部任务,还能泛化到未见过的任务,通过可视化示例帮助模型理解任务。这种方法利用了先进的图像填充模型的强生成先验,为图像生成提供了强有力的支持。
专注于计算机视觉和机器学习领域的研究与创新的博客网站
Shangchen Zhou 是一位在计算机视觉和机器学习领域有着深厚研究背景的博士生,他的工作主要集中在视觉内容增强、编辑和生成AI(2D和3D)上。他的研究成果广泛应用于图像和视频的超分辨率、去模糊、低光照增强等领域,为提升视觉内容的质量和用户体验做出了重要贡献。
自监督学习框架,用于音视觉语音处理
AV-HuBERT是一个自监督表示学习框架,专门用于音视觉语音处理。它在LRS3音视觉语音基准测试中实现了最先进的唇读、自动语音识别(ASR)和音视觉语音识别结果。该框架通过掩蔽多模态聚类预测来学习音视觉语音表示,并且提供了鲁棒的自监督音视觉语音识别。
语音转文字,支持实时语音识别、录音文件识别等
腾讯云语音识别(ASR)为开发者提供语音转文字服务的最佳体验。语音识别服务具备识别准确率高、接入便捷、性能稳定等特点。腾讯云语音识别服务开放实时语音识别、一句话识别和录音文件识别三种服务形式,满足不同类型开发者需求。技术先进,性价比高,多语种支持,适用于客服、会议、法庭等多场景。
多模态嵌入模型,实现文本、图像和截图的无缝检索。
Voyage AI推出的voyage-multimodal-3是一款多模态嵌入模型,它能够将文本和图像(包括PDF、幻灯片、表格等的截图)进行向量化处理,并捕捉关键视觉特征,从而提高文档检索的准确性。这一技术的进步,对于知识库中包含视觉和文本的丰富信息的RAG和语义搜索具有重要意义。voyage-multimodal-3在多模态检索任务中平均提高了19.63%的检索准确率,相较于其他模型表现出色。
连接不同语言模型和生成视觉模型进行文本到图像生成
LaVi-Bridge是一种针对文本到图像扩散模型设计的桥接模型,能够连接各种预训练的语言模型和生成视觉模型。它通过利用LoRA和适配器,提供了一种灵活的插拔式方法,无需修改原始语言和视觉模型的权重。该模型与各种语言模型和生成视觉模型兼容,可容纳不同的结构。在这一框架内,我们证明了通过整合更高级的模块(如更先进的语言模型或生成视觉模型)可以明显提高文本对齐或图像质量等能力。该模型经过大量评估,证实了其有效性。
秒级识别您最好的照片
Photor AI是一个使用先进的图像识别和机器学习技术来分析和选择最佳照片的工具。它可以帮助您在几秒钟内找到最适合专业或个人使用的照片。Photor AI可以识别您的照片中的主要元素和情感,帮助您选择出最优秀的照片。此外,它还提供AI摄影标题和AI摄影级别的功能。Photor AI的使用场景广泛,适用于个人、职业和商业用途。
机器人图像渲染的新发展
Wild2Avatar是一个用于渲染被遮挡的野外单目视频中的人类外观的神经渲染方法。它可以在真实场景下渲染人类,即使障碍物可能会阻挡相机视野并导致部分遮挡。该方法通过将场景分解为三部分(遮挡物、人类和背景)来实现,并使用特定的目标函数强制分离人类与遮挡物和背景,以确保人类模型的完整性。
基于Java的全能视觉智能识别项目
JavaVision是一个基于Java开发的全能视觉智能识别项目,它不仅实现了PaddleOCR-V4、YoloV8物体识别、人脸识别、以图搜图等核心功能,还可以轻松扩展到其他领域,如语音识别、动物识别、安防检查等。项目特点包括使用SpringBoot框架、多功能性、高性能、可靠稳定、易于集成和灵活可拓展。JavaVision旨在为Java开发者提供一个全面的视觉智能识别解决方案,让他们能够以熟悉且喜爱的编程语言构建出先进、可靠且易于集成的AI应用。
朱雀大模型检测,精准识别AI生成图像,助力内容真实性鉴别。
朱雀大模型检测是腾讯推出的一款AI检测工具,主要功能是检测图片是否由AI模型生成。它经过大量自然图片和生成图片的训练,涵盖摄影、艺术、绘画等内容,可检测多类主流文生图模型生成图片。该产品具有高精度检测、快速响应等优点,对于维护内容真实性、打击虚假信息传播具有重要意义。目前暂未明确其具体价格,但从功能来看,主要面向需要进行内容审核、鉴别真伪的机构和个人,如媒体、艺术机构等。
先进的AI检索器,用于RAG。
DenserRetriever是一个开源的AI检索模型,专为RAG(Retrieval-Augmented Generation)设计,利用社区协作的力量,采用XGBoost机器学习技术有效结合异构检索器,旨在满足大型企业的需求,并且易于部署,支持docker快速启动。它在MTEB检索基准测试中达到了最先进的准确性,并且Hugging Face排行榜上也有其身影。
基于视觉语言模型的检索增强型生成模型
VisRAG是一个创新的视觉语言模型(VLM)基础的RAG(Retrieval-Augmented Generation)流程。与传统的基于文本的RAG不同,VisRAG直接将文档作为图像通过VLM进行嵌入,然后检索以增强VLM的生成能力。这种方法最大限度地保留了原始文档中的数据信息,并消除了解析过程中引入的信息损失。VisRAG模型在多模态文档上的应用,展示了其在信息检索和增强文本生成方面的强大潜力。
智能图像识别API
Monster API是一个智能图像识别API,可以帮助开发者快速实现图像识别功能。它提供了多种功能,包括物体识别、人脸识别、文字识别等。优势是准确率高、响应速度快、易于集成。价格根据使用情况计费,具体请查看官方网站。Monster API的定位是为开发者提供强大的图像识别能力,帮助他们构建智能应用。
视觉增强的检索与生成系统
VARAG是一个支持多种检索技术的系统,优化了文本、图像和多模态文档检索的不同用例。它通过将文档页面作为图像嵌入,简化了传统的检索流程,并使用先进的视觉语言模型进行编码,提高了检索的准确性和效率。VARAG的主要优点在于它能够处理复杂的视觉和文本内容,为文档检索提供强大的支持。
PaliGemma 2是功能强大的视觉语言模型,简单易调优。
PaliGemma 2是Gemma家族中的第二代视觉语言模型,它在性能上进行了扩展,增加了视觉能力,使得模型能够看到、理解和与视觉输入交互,开启了新的可能性。PaliGemma 2基于高性能的Gemma 2模型构建,提供了多种模型尺寸(3B、10B、28B参数)和分辨率(224px、448px、896px)以优化任何任务的性能。此外,PaliGemma 2在化学公式识别、乐谱识别、空间推理和胸部X光报告生成等方面展现出领先的性能。PaliGemma 2旨在为现有PaliGemma用户提供便捷的升级路径,作为即插即用的替代品,大多数任务无需大幅修改代码即可获得性能提升。
© 2025 AIbase 备案号:闽ICP备08105208号-14