需求人群:
"目标受众包括媒体机构、艺术机构、内容审核人员等。媒体机构可利用其鉴别新闻图片真伪,防止虚假新闻传播;艺术机构可用于鉴别艺术作品是否为AI创作,保护艺术家权益;内容审核人员可快速筛选出AI生成的图片,提高审核效率。"
使用场景示例:
某新闻机构收到一张声称是现场拍摄的新闻照片,通过朱雀大模型检测发现其为AI生成,避免了虚假新闻的传播。
一家艺术画廊收到多幅投稿作品,使用该工具检测出部分作品为AI创作,从而确保展览作品的真实性。
内容审核团队在审核用户上传的图片时,借助该产品快速筛选出AI生成的图片,提高了审核的准确性和效率。
产品特色:
AI生成图像检测:利用先进AI模型,精准识别图片是否由AI生成
多模型支持:可检测多类主流文生图模型生成的图片,检测范围持续扩大
高精度训练:经过百万张自然图片和生成图片训练,涵盖丰富内容
快速检测:用户可快速上传图片进行检测,及时获取检测结果
结果反馈:明确显示AI生成概率,让用户清晰了解图片真伪可能性
用户反馈机制:提供满意与不满意的反馈选项,便于优化检测算法
使用教程:
1. 访问朱雀大模型检测网站
2. 点击页面中的“点击上传图片”按钮或拖拽图片到指定区域
3. 选择需要检测的图片文件进行上传
4. 等待系统检测,检测完成后会显示AI生成概率
5. 根据检测结果判断图片是否为AI生成,可点击满意或不满意进行反馈
浏览量:793
最新流量情况
月访问量
302.33k
平均访问时长
00:01:45
每次访问页数
1.38
跳出率
69.00%
流量来源
直接访问
41.03%
自然搜索
49.01%
邮件
0.10%
外链引荐
8.59%
社交媒体
1.06%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
89.76%
新加坡
0.77%
美国
5.33%
朱雀大模型检测,精准识别AI生成图像,助力内容真实性鉴别。
朱雀大模型检测是腾讯推出的一款AI检测工具,主要功能是检测图片是否由AI模型生成。它经过大量自然图片和生成图片的训练,涵盖摄影、艺术、绘画等内容,可检测多类主流文生图模型生成图片。该产品具有高精度检测、快速响应等优点,对于维护内容真实性、打击虚假信息传播具有重要意义。目前暂未明确其具体价格,但从功能来看,主要面向需要进行内容审核、鉴别真伪的机构和个人,如媒体、艺术机构等。
AI图像检测工具,识别篡改照片
TruthPix是一款AI图像检测工具,旨在帮助用户识别经过AI篡改的照片。该应用通过先进的AI技术,能够快速、准确地识别出图像中的克隆和篡改痕迹,从而避免用户在社交媒体等平台上被虚假信息误导。该应用的主要优点包括:安全性高,所有检测都在设备上完成,不上传数据;检测速度快,分析一张图片仅需不到400毫秒;支持多种AI生成图像的检测技术,如GANs、Diffusion Models等。
一款用于检测文本是否由人工智能生成并可将AI文本改写为人类风格的工具。
该产品通过先进的技术检测文本是否由人工智能生成,同时提供文本改写功能,使AI生成的文本具有人类写作的自然风格。它对维护内容的原创性和真实性具有重要意义,尤其在学术、教育、内容创作等领域。产品完全免费,无需注册,支持多语言,适合广泛用户。
一款专注于检测清理AI痕迹,帮助论文降AI率、降重的工具
嘎嘎降AI(AIGCleaner)是一款针对学术写作场景设计的工具,旨在帮助用户降低论文中的AI痕迹和重复率。在当前学术环境中,AI写作工具的使用日益普及,但过度依赖可能导致学术不端的嫌疑。AIGCleaner通过先进的文本分析和改写技术,能够有效降低文本的AI检测率和重复率,帮助用户在合法合规的范围内提升写作质量。该产品定位为学术写作辅助工具,主要面向学生、研究人员等群体,价格策略为1000字免费试用,后续可能需要付费购买完整服务。
由 Google 训练的 AI 模型,用于对野生动物相机陷阱图像中的物种进行分类。
Google CameraTrapAI 是一个用于野生动物图像分类的 AI 模型集合。它通过运动触发的野生动物相机(相机陷阱)拍摄的图像来识别动物物种。该技术对于野生动物监测和保护工作具有重要意义,能够帮助研究人员和保护工作者更高效地处理大量的图像数据,节省时间并提高工作效率。该模型基于深度学习技术开发,具有高准确性和强大的分类能力。
PaliGemma 2 mix 是一款多功能的视觉语言模型,适用于多种任务和领域。
PaliGemma 2 mix 是 Google 推出的升级版视觉语言模型,属于 Gemma 家族。它能够处理多种视觉和语言任务,如图像分割、视频字幕生成、科学问题回答等。该模型提供不同大小的预训练检查点(3B、10B 和 28B 参数),可轻松微调以适应各种视觉语言任务。其主要优点是多功能性、高性能和开发者友好性,支持多种框架(如 Hugging Face Transformers、Keras、PyTorch 等)。该模型适用于需要高效处理视觉和语言任务的开发者和研究人员,能够显著提升开发效率。
OmniParser 是一款通用屏幕解析工具,可将 UI 截图转换为结构化格式,提升基于 LLM 的 UI 代理性能。
OmniParser 是微软开发的一种先进的图像解析技术,旨在将不规则的屏幕截图转换为结构化的元素列表,包括可交互区域的位置和图标的功能描述。它通过深度学习模型,如 YOLOv8 和 Florence-2,实现了对 UI 界面的高效解析。该技术的主要优点在于其高效性、准确性和广泛的适用性。OmniParser 可以显著提高基于大型语言模型(LLM)的 UI 代理的性能,使其能够更好地理解和操作各种用户界面。它在多种应用场景中表现出色,如自动化测试、智能助手开发等。OmniParser 的开源特性和灵活的许可证使其成为开发者和研究人员的有力工具。
AI驱动的深度W造和语音克隆检测平台,快速验证视频、语音和信息。
Scam AI 是一款专注于检测 AI 欺诈行为的平台。它通过先进的技术手段,能够快速分析和识别深度W造的视频、语音克隆以及其他潜在的欺诈信息。在 AI 技术快速发展的今天,虚假信息的传播速度和隐蔽性都大大增加,Scam AI 的出现为用户提供了必要的防护工具。它无需用户具备技术背景,即可快速验证各种内容的真实性,帮助用户在数字世界中保持警惕,避免成为欺诈行为的受害者。目前,该平台处于 Beta 测试阶段,致力于不断完善其检测算法和用户体验。
基于推理驱动的目标检测技术,通过文本提示实现类似人类精度的检测。
Agentic Object Detection 是一种先进的推理驱动目标检测技术,能够通过文本提示精确识别图像中的目标对象。它无需大量的自定义训练数据,即可实现类似人类精度的检测。该技术利用设计模式对目标的独特属性(如颜色、形状和纹理)进行深度推理,从而在各种场景中实现更智能、更精确的识别。其主要优点包括高精度、无需大量训练数据以及能够处理复杂场景。该技术适用于需要高精度图像识别的行业,如制造业、农业、医疗等领域,能够帮助企业提高生产效率和质量控制水平。产品目前处于试用阶段,用户可以免费试用体验其功能。
一个有趣的图像识别应用,用于判断上传的图片是否为热狗。
该产品利用图像识别技术,通过上传图片来判断是否为热狗。它基于深度学习模型,能够快速准确地识别热狗图像。这种技术展示了图像识别在日常生活中的趣味应用,同时也体现了人工智能技术的普及性和娱乐性。产品背景源于对AI技术的趣味探索,旨在通过简单的图像识别功能,让用户感受到AI的魅力。该产品目前为免费使用,主要面向喜欢尝试新技术和追求趣味体验的用户。
Qwen2.5-VL 是一款强大的视觉语言模型,能够理解图像和视频内容并生成相应文本。
Qwen2.5-VL 是 Qwen 团队推出的最新旗舰视觉语言模型,是视觉语言模型领域的重要进步。它不仅能够识别常见物体,还能分析图像中的文字、图表、图标等复杂内容,并支持对长视频的理解和事件定位。该模型在多个基准测试中表现出色,尤其在文档理解和视觉代理任务中具有显著优势,展现了强大的视觉理解和推理能力。其主要优点包括高效的多模态理解、强大的长视频处理能力以及灵活的工具调用能力,适用于多种应用场景。
基于先进AI模型,能精准识别AI生成文本,中英文检测能力出色。
朱雀大模型检测是腾讯推出的AI文本检测工具。它利用多种先进AI模型,经数百万级数据训练,能精准识别AI与人类书写模式。在中文数据处理上表现尤为出色,为内容创作者、教育工作者等提供了有力的检测支持,帮助他们辨别文本来源,确保内容原创性。该产品目前处于特邀测试阶段,具体价格和定位尚未明确。
一个强大的OCR包,使用最先进的视觉语言模型提取图像中的文本。
ollama-ocr是一个基于ollama的光学字符识别(OCR)模型,能够从图像中提取文本。它利用先进的视觉语言模型,如LLaVA、Llama 3.2 Vision和MiniCPM-V 2.6,提供高精度的文本识别。该模型对于需要从图片中获取文本信息的场景非常有用,如文档扫描、图像内容分析等。它开源免费,易于集成到各种项目中。
Kimi 视觉模型可理解图片内容,包括文字、颜色和物体形状等。
Kimi 视觉模型是 Moonshot AI 开放平台提供的先进图像理解技术。它能够准确识别和理解图片中的文字、颜色和物体形状等内容,为用户提供强大的视觉分析能力。该模型具有高效、准确的特点,适用于多种场景,如图像内容描述、视觉问答等。其定价与 moonshot-v1 系列模型一致,根据模型推理的总 Tokens 计费,每张图片消耗的 Tokens 为固定值 1024。
一个由moondream创建的Hugging Face Space,用于展示注视点相关技术
Gaze Demo是一个基于Hugging Face Spaces平台的项目,由用户moondream创建。它主要展示与注视点(Gaze)相关的技术,可能涉及到图像识别、用户交互等领域。该技术的重要性在于能够通过分析用户的注视点来增强用户体验,例如在人机交互、广告投放、虚拟现实等场景中有广泛应用。产品目前处于展示阶段,未明确具体价格和详细定位。
一款通过生活场景学习日语的APP。
KaChiKa是一款旨在通过生活场景帮助用户学习日语的应用程序。它利用智能图像分析技术,将图片内容转化为日语单词和句子,以视觉记忆的方式辅助学习。该应用强调在日常生活中轻松掌握日语,适合各类日语学习者。应用提供免费下载,但包含应用内购买项目,如会员服务,价格分别为每月2.99美元和每年29.99美元。
一种用于检测机器修订文本的先进方法,通过模仿机器风格来提高检测准确性。
Imitate Before Detect 是一种创新的文本检测技术,旨在提高对机器修订文本的检测能力。该技术通过模仿大型语言模型(LLM)的风格偏好,能够更准确地识别出经过机器修订的文本。其核心优势在于能够有效区分机器生成和人类写作的细微差别,从而在文本检测领域具有重要的应用价值。该技术的背景信息显示,它能够显著提高检测的准确性,并且在处理开源LLM修订文本时,AUC值提升了13%,在检测GPT-3.5和GPT-4o修订文本时分别提升了5%和19%。其定位是为研究人员和开发者提供一种高效的文本检测工具。
AnyParser Pro 是一款能够快速准确地从 PDF、PPT 和图像中提取内容的大型语言模型。
AnyParser Pro 是由 CambioML 开发的一款创新的文档解析工具,它利用大型语言模型(LLM)技术,能够快速准确地从 PDF、PPT 和图像文件中提取出完整的文本内容。该技术的主要优点在于其高效的处理速度和高精度的解析能力,能够显著提高文档处理的效率。AnyParser Pro 的背景信息显示,它是由 Y Combinator 孵化的初创公司 CambioML 推出的,旨在为用户提供一种简单易用且功能强大的文档解析解决方案。目前,该产品提供免费试用,用户可以通过获取 API 密钥来访问其功能。
多模态大型模型,处理文本、图像和视频数据
Valley-Eagle-7B是由字节跳动开发的多模态大型模型,旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,并在OpenCompass测试中展现出与同规模模型相比的卓越性能。Valley-Eagle-7B结合了LargeMLP和ConvAdapter构建投影器,并引入了VisionEncoder,以增强模型在极端场景下的性能。
一个强大的OCR(光学字符识别)工具
Ollama-OCR是一个使用最新视觉语言模型的OCR工具,通过Ollama提供技术支持,能够从图像中提取文本。它支持多种输出格式,包括Markdown、纯文本、JSON、结构化数据和键值对,并且支持批量处理功能。这个项目以Python包和Streamlit网络应用的形式提供,方便用户在不同场景下使用。
先进的大型混合专家视觉语言模型
DeepSeek-VL2是一系列先进的大型混合专家(MoE)视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解、视觉定位等多项任务中展现出卓越的能力。DeepSeek-VL2由三种变体组成:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有1.0B、2.8B和4.5B激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集型和基于MoE的模型相比,达到了竞争性或最先进的性能。
端侧全模态理解开源模型
Megrez-3B-Omni是由无问芯穹研发的端侧全模态理解模型,基于大语言模型Megrez-3B-Instruct扩展,具备图片、文本、音频三种模态数据的理解分析能力。该模型在图像理解、语言理解、语音理解方面均取得最优精度,支持中英文语音输入及多轮对话,支持对输入图片的语音提问,根据语音指令直接响应文本,在多项基准任务上取得了领先的结果。
基于强化学习技术的视觉思考模型,理科测试行业领先
Kimi视觉思考模型k1是基于强化学习技术打造的AI模型,原生支持端到端图像理解和思维链技术,并将能力扩展到数学之外的更多基础科学领域。在数学、物理、化学等基础科学学科的基准能力测试中,k1模型的表现超过了全球标杆模型。k1模型的发布标志着AI在视觉理解和思考能力上的新突破,尤其在处理图像信息和基础科学问题上展现出色的表现。
多模态大型语言模型,支持图像和文本理解
InternVL 2.5是一系列先进的多模态大型语言模型(MLLM),它在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,保持了其核心模型架构。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5支持多图像和视频数据,通过动态高分辨率训练方法,增强了模型处理多模态数据的能力。
基于InternViT-6B-448px-V1-5的增强版视觉模型
InternViT-6B-448px-V2_5是一个基于InternViT-6B-448px-V1-5的视觉模型,通过使用ViT增量学习与NTP损失(阶段1.5),提升了视觉编码器提取视觉特征的能力,尤其是在大规模网络数据集中代表性不足的领域,如多语言OCR数据和数学图表等。该模型是InternVL 2.5系列的一部分,保留了与前代相同的“ViT-MLP-LLM”模型架构,并集成了新增量预训练的InternViT与各种预训练的LLMs,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。
先进的多模态大型语言模型系列
InternVL 2.5是OpenGVLab推出的多模态大型语言模型系列,它在InternVL 2.0的基础上进行了显著的训练和测试策略增强,以及数据质量提升。该模型系列能够处理图像、文本和视频数据,具备多模态理解和生成的能力,是当前多模态人工智能领域的前沿产品。InternVL 2.5系列模型以其高性能和开源特性,为多模态任务提供了强大的支持。
一款AI视觉语言模型,提供图像分析和描述服务。
InternVL是一个AI视觉语言模型,专注于图像分析和描述。它通过深度学习技术,能够理解和解释图像内容,为用户提供准确的图像描述和分析结果。InternVL的主要优点包括高准确性、快速响应和易于集成。该技术背景基于最新的人工智能研究,致力于提高图像识别的效率和准确性。目前,InternVL提供免费试用,具体价格和定位需要根据用户需求定制。
视觉语言模型增强工具,结合生成式视觉编码器和深度广度融合技术。
Florence-VL是一个视觉语言模型,通过引入生成式视觉编码器和深度广度融合技术,增强了模型对视觉和语言信息的处理能力。该技术的重要性在于其能够提升机器对图像和文本的理解,进而在多模态任务中取得更好的效果。Florence-VL基于LLaVA项目进行开发,提供了预训练和微调的代码、模型检查点和演示。
PaliGemma 2是功能强大的视觉语言模型,简单易调优。
PaliGemma 2是Gemma家族中的第二代视觉语言模型,它在性能上进行了扩展,增加了视觉能力,使得模型能够看到、理解和与视觉输入交互,开启了新的可能性。PaliGemma 2基于高性能的Gemma 2模型构建,提供了多种模型尺寸(3B、10B、28B参数)和分辨率(224px、448px、896px)以优化任何任务的性能。此外,PaliGemma 2在化学公式识别、乐谱识别、空间推理和胸部X光报告生成等方面展现出领先的性能。PaliGemma 2旨在为现有PaliGemma用户提供便捷的升级路径,作为即插即用的替代品,大多数任务无需大幅修改代码即可获得性能提升。
© 2025 AIbase 备案号:闽ICP备08105208号-14