基于LangChain和Streamlit的思维导图工具
Brainstormers是一个基于LangChain和Streamlit构建的应用,旨在通过提供受现实世界有效头脑风暴技术启发的策划和优化链来增强您的头脑风暴体验。与传统的直接使用ChatGPT不同,这个应用允许您参与结构化的头脑风暴方法,引导您全面探索想法,并最大化LLM驱动的头脑风暴的好处。该应用提供了多种头脑风暴技术,包括大思维导图、逆向头脑风暴、角色风暴、SCAMPER、六顶思考帽和星爆法等,帮助用户从不同角度审视问题,激发创新解决方案。
AI驱动的多智能体数据分析系统
AI-Data-Analysis-MultiAgent是一个高级的AI驱动研究助理系统,利用多个专业智能体协助进行数据分析、可视化和报告生成等任务。该系统采用LangChain、OpenAI的GPT模型和LangGraph处理复杂的研究流程,集成多样化的AI架构以实现最佳性能。该系统的独特之处在于集成了一个专门的Note Taker智能体,通过维护项目的简洁而全面的记录,可以降低计算开销,提高不同分析阶段之间的上下文保持能力,并实现更连贯一致的分析结果。
通过GPT等大型语言模型与你的文档对话
IncarnaMind是一个开源项目,旨在通过大型语言模型(LLMs)如GPT、Claude和本地开源LLMs,实现与个人文档(PDF、TXT)的交互对话。该项目利用滑动窗口分块机制和集成检索器,提高查询效率,增强LLMs的准确性。它支持多文档对话问答,突破了单文档限制,并兼容多种文件格式和LLM模型。
构建知识图谱的Neo4j应用
llm-graph-builder是一个利用大型语言模型(如OpenAI、Gemini等)从非结构化数据(PDF、DOCS、TXT、YouTube视频、网页等)中提取节点、关系及其属性,并使用Langchain框架创建结构化知识图谱的应用程序。它支持从本地机器、GCS或S3存储桶或网络资源上传文件,选择LLM模型并生成知识图谱。
掌握RAG技术,提升AI生成内容的准确性和相关性。
Retrieval-Augmented Generation (RAG) 是一种前沿技术,通过整合外部知识源来增强生成模型的能力,提高生成内容的质量和可靠性。LangChain是一个强大的框架,专为构建和部署稳健的语言模型应用而设计。本教程系列将提供全面的、分步骤的指南,帮助您使用LangChain实现RAG,从基础RAG流程的介绍开始,逐步深入到查询转换、文档嵌入、路由机制、查询构建、索引策略、检索技术以及生成阶段,最终将所有概念整合到一个实际场景中,展示RAG的强大和灵活性。
低代码构建多Agent大模型应用的开发工具
LazyLLM是一个致力于简化人工智能应用构建流程的开发工具,它通过提供低代码的解决方案,使得开发者即使不了解大模型也能轻松组装包含多个Agent的AI应用。LazyLLM支持一键部署所有模块,跨平台兼容,自动进行网格搜索参数优化,以及高效的模型微调,从而提升应用效果。
AI原生数据应用开发框架
DB-GPT是一个开源的AI原生数据应用开发框架,利用AWEL(Agentic Workflow Expression Language)和代理(agent)技术,简化了大型模型应用与数据的结合。它通过多模型管理、Text2SQL效果优化、RAG框架优化、多代理框架协作等技术能力,使企业和开发者能够以更少的代码构建定制化应用。DB-GPT在数据3.0时代,基于模型和数据库,为构建企业级报告分析和业务洞察提供了基础数据智能技术。
© 2025 AIbase 备案号:闽ICP备08105208号-14