需求人群:
"目标受众包括研究人员、开发者和任何需要与大量文档进行交互的用户。IncarnaMind通过提供高效的文档查询和对话功能,帮助他们更好地理解和利用文档中的数据,提高工作效率。"
使用场景示例:
研究人员可以使用IncarnaMind与他们的研究论文进行对话,快速获取所需信息。
开发者可以通过IncarnaMind与技术文档交互,解决编程中遇到的问题。
企业用户可以利用IncarnaMind进行知识管理,提高团队协作效率。
产品特色:
自适应分块:动态调整窗口大小和位置,平衡细粒度和粗粒度数据访问。
多文档对话问答:支持简单和多跳查询,同时跨多个文档进行查询。
文件兼容性:支持PDF和TXT文件格式。
LLM模型兼容性:支持OpenAI GPT、Anthropic Claude、Llama2和其他开源LLMs。
系统要求:需要超过35GB的GPU RAM来运行GGUF量化版本。
开源和本地LLMs支持:推荐使用llama2-70b-chat模型,支持其他LLMs的实验。
即将发布:计划发布更小、成本效益更高的微调模型。
使用教程:
1. 安装:克隆仓库并设置Python环境。
2. 创建环境:使用Conda创建虚拟环境并激活。
3. 安装依赖:安装所有必需的依赖项。
4. 设置API密钥:在configparser.ini文件中设置API密钥。
5. 上传文件:将文件放入/data目录并运行命令处理文件。
6. 运行:启动对话,等待脚本提示输入。
7. 聊天:与系统进行交互,提出问题并获取答案。
8. 日志管理:系统会自动生成IncarnaMind.log文件,可以根据需要编辑日志设置。
浏览量:27
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
通过GPT等大型语言模型与你的文档对话
IncarnaMind是一个开源项目,旨在通过大型语言模型(LLMs)如GPT、Claude和本地开源LLMs,实现与个人文档(PDF、TXT)的交互对话。该项目利用滑动窗口分块机制和集成检索器,提高查询效率,增强LLMs的准确性。它支持多文档对话问答,突破了单文档限制,并兼容多种文件格式和LLM模型。
发现、分享和推广最好的OpenAI GPT
ProGPTs是一个专注于OpenAI GPT的平台,用户可以发现、分享和推广最好的GPT模型。平台提供了一个独家列表,展示了各种领域的顶尖GPT模型。用户可以提交自己的GPT模型,与超过7000名用户分享和推广。ProGPTs还提供了订阅功能,让用户可以及时了解到最新的GPT模型。无论你是开发者、研究者还是对GPT模型感兴趣的人,ProGPTs都是一个不可多得的资源。
一站式数据处理系统,为大型语言模型提供高质量数据。
Data-Juicer 是一个一站式的多模态数据处理系统,旨在为大型语言模型(LLMs)提供更高质量、更丰富、更易消化的数据。它提供了一个系统化和可复用的数据处理库,支持数据与模型的协同开发,通过沙盒实验室实现快速迭代,并提供基于数据和模型的反馈循环、可视化和多维度自动评估等功能,帮助用户更好地理解和改进他们的数据和模型。Data-Juicer 正在积极更新和维护,定期增强和添加更多功能、数据配方和数据集。
集成大型语言模型的SDK
Semantic Kernel是一个集成了大型语言模型(LLMs)如OpenAI、Azure OpenAI和Hugging Face的软件开发工具包(SDK),它允许开发者通过定义可串联的插件,在几行代码内实现与AI的交互。其特色在于能够自动编排AI插件,使用户能够通过LLM生成实现特定目标的计划,并由Semantic Kernel执行该计划。
AI原生数据应用开发框架
DB-GPT是一个开源的AI原生数据应用开发框架,利用AWEL(Agentic Workflow Expression Language)和代理(agent)技术,简化了大型模型应用与数据的结合。它通过多模型管理、Text2SQL效果优化、RAG框架优化、多代理框架协作等技术能力,使企业和开发者能够以更少的代码构建定制化应用。DB-GPT在数据3.0时代,基于模型和数据库,为构建企业级报告分析和业务洞察提供了基础数据智能技术。
基于AI的Python网络爬虫库,自动化提取网页信息。
ScrapeGraphAI是一个使用LLM(大型语言模型)和直接图逻辑来为网站、文档和XML文件创建抓取管道的Python网络爬虫库。用户只需指定想要提取的信息,库就会自动完成这项工作。该库的主要优点在于简化了网络数据抓取的过程,提高了数据提取的效率和准确性。它适用于数据探索和研究目的,但不应被滥用。
基于 LLM 大语言模型的知识库问答系统。
MaxKB 是一款基于 LLM 大语言模型的知识库问答系统,旨在成为企业的最强大脑。支持文档上传、自动爬取在线文档,智能问答交互体验好。支持快速嵌入到第三方业务系统。技术栈包括 Vue.js、Python/Django、Langchain、PostgreSQL/pgvector。
GPT-4超能力聊天机器人
PageBot是一款由GPT驱动的聊天机器人,能够理解您的网站内容和知识库。它可以为您的客户提供令人愉快和即时的对话体验。无需编程,只需一行代码,即可将PageBot集成到您的网站中。 PageBot可以自动导入各种数据,提供优化的回答,还有免费计划和灵活的定价。
Visual Studio Code插件,基于GPT-4,帮助编程,提高效率。
Sidekick AI是一个Visual Studio Code的插件,它利用GPT-4的能力,为开发者提供各种支持,比如快速生成代码、检索和修改代码、提出疑问并解答、查找bug等,可以极大提高编程效率。
AI Buddy - 智能个人助理
AI Buddy是一款智能个人助理应用,采用最新的OpenAI技术,GPT,可以回答问题、帮助撰写文本等,以自然对话的形式提供帮助。免费版本提供每日5条信息,订阅版本提供更多交互和更深入有意义的对话。定价方案灵活且实惠。不断更新改进的应用,添加新功能和能力。快来下载AI Buddy,探索人工智能的无限可能吧!
定制化GPT解决方案,加速业务转型
YourGPT是一款定制化的GPT解决方案,帮助您更快更智能地实现业务目标。借助LLMs和GPT的强大能力,您可以轻松构建和集成GPT,满足个性化需求。通过YourGPT,您可以解锁人工智能和GPT技术的全部潜力,自信地实现创新。
让您的AI助手像人类一样交流
Quickchat AI是一款帮助公司构建自己的多语言AI助手的技术。借助我们的无代码平台和强大的集成功能,公司可以构建会话式AI界面,并将其连接到任何网站、产品、应用、游戏或智能设备。Quickchat AI由生成式AI模型(如GPT-3)驱动,可以实现多语言的自然对话,并提供自动化客户支持、线索生成等功能。
Qwen Turbo 1M Demo是一个由Qwen提供的Hugging Face空间。
Qwen Turbo 1M Demo是一个基于Hugging Face平台的人工智能模型演示。这个模型代表了自然语言处理技术的最新进展,特别是在中文文本理解和生成方面。它的重要性在于能够提供高效、准确的语言模型,以支持各种语言相关的应用,如机器翻译、文本摘要、问答系统等。Qwen Turbo 1M Demo以其较小的模型尺寸和快速的处理速度而受到青睐,适合需要快速部署和高效运行的场合。目前,该模型是免费试用的,具体价格和定位可能需要进一步的商业洽谈。
现代Python数据框库,专为人工智能设计。
DataChain是一个现代的Python数据框库,专为人工智能设计。它旨在将非结构化数据组织成数据集,并在本地机器上大规模处理数据。DataChain不抽象或隐藏AI模型和API调用,而是帮助将它们集成到后现代数据堆栈中。该产品以其高效性、易用性和强大的数据处理能力为主要优点,支持多种数据存储和处理方式,包括图像、视频、文本等多种数据类型,并且能够与PyTorch和TensorFlow等深度学习框架无缝对接。DataChain是开源的,遵循Apache-2.0许可协议,免费供用户使用。
O1复制之旅:战略进展报告第一部分
O1-Journey是由上海交通大学GAIR研究组发起的一个项目,旨在复制和重新想象OpenAI的O1模型的能力。该项目提出了“旅程学习”的新训练范式,并构建了首个成功整合搜索和学习在数学推理中的模型。这个模型通过试错、纠正、回溯和反思等过程,成为处理复杂推理任务的有效方法。
高精度将图片或PDF转换为Markdown文本或JSON结构化文档的API
pdf-extract-api是一个使用现代OCR技术和Ollama支持的模型将任何文档或图片转换为结构化的JSON或Markdown文本的API。它使用FastAPI构建,并使用Celery进行异步任务处理,Redis用于缓存OCR结果。该API无需云或外部依赖,所有处理都在本地开发或服务器环境中完成,确保数据安全。它支持PDF到Markdown的高精度转换,包括表格数据、数字或数学公式,并且可以使用Ollama支持的模型进行PDF到JSON的转换。此外,该API还支持LLM改进OCR结果,去除PDF中的个人身份信息(PII),以及分布式队列处理和缓存。
多语言大型语言模型,支持23种语言
Aya Expanse 32B是由Cohere For AI开发的多语言大型语言模型,拥有32亿参数,专注于提供高性能的多语言支持。它结合了先进的数据仲裁、多语言偏好训练、安全调整和模型合并技术,以支持23种语言,包括阿拉伯语、中文(简体和繁体)、捷克语、荷兰语、英语、法语、德语、希腊语、希伯来语、印地语、印尼语、意大利语、日语、韩语、波斯语、波兰语、葡萄牙语、罗马尼亚语、俄语、西班牙语、土耳其语、乌克兰语和越南语。该模型的发布旨在使社区基础的研究工作更加易于获取,通过发布高性能的多语言模型权重,供全球研究人员使用。
长视频语言理解的时空自适应压缩模型
LongVU是一种创新的长视频语言理解模型,通过时空自适应压缩机制减少视频标记的数量,同时保留长视频中的视觉细节。这一技术的重要性在于它能够处理大量视频帧,且在有限的上下文长度内仅损失少量视觉信息,显著提升了长视频内容理解和分析的能力。LongVU在多种视频理解基准测试中均超越了现有方法,尤其是在理解长达一小时的视频任务上。此外,LongVU还能够有效地扩展到更小的模型尺寸,同时保持最先进的视频理解性能。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
利用简单视频输入生成富有表现力的角色表演
Act-One 是 Runway Research 推出的一款创新工具,它通过简单的视频输入生成富有表现力的角色表演。这款工具代表了使用生成模型进行表情丰富的真人动作和动画内容的重大进步。Act-One 的技术突破在于,它能够将演员的表演转化为适合动画流水线的3D模型,同时保留情感和细节。与传统的面部动画流程相比,Act-One 使用的流程完全由演员的表演驱动,无需额外设备。Act-One 的出现为创造性角色设计和动画开辟了新的可能性,它能够准确翻译表演到与原始源视频比例不同的角色上,并且能够在不同的摄像机角度下保持高保真度的面部动画。此外,Act-One 还承诺负责任的开发和部署,包括内容审核和安全预防措施。
用于双手操作的扩散基础模型
RDT-1B是一个参数量达到1B(目前最大)的模仿学习扩散变换器,预训练在超过1M(目前最大)的多机器人情节上。给定语言指令和多达三个视图的RGB图像,RDT可以预测接下来的64个机器人动作。RDT与几乎所有现代移动操作器兼容,包括单臂到双臂、关节到末端执行器、位置到速度,甚至包括轮式运动。该模型在6K+(最大的之一)自收集的双手情节上进行了微调,并部署在ALOHA双臂机器人上。它在灵巧性、零样本泛化能力和少样本学习方面达到了最先进的性能。
视频生成评估基准测试
Movie Gen Bench是由Facebook Research发布的视频生成评估基准测试,旨在为未来在视频生成领域的研究提供公平且易于比较的标准。该基准测试包括Movie Gen Video Bench和Movie Gen Audio Bench两个部分,分别针对视频内容生成和音频生成进行评估。Movie Gen Bench的发布,对于推动视频生成技术的发展和评估具有重要意义,它能够帮助研究人员和开发者更好地理解和改进视频生成模型的性能。
ChatGPT的早期版本,专为Plus、团队、企业和教育用户设计。
ChatGPT是由OpenAI开发的人工智能聊天机器人,它通过使用最新的模型改进,包括访问OpenAI o1-preview,即最新和最智能的模型,为用户提供即时答案、文件和照片的聊天、多文档的总结和分析、专业建议以及创意灵感等功能。这个早期版本目前只对ChatGPT Plus、团队、企业和教育用户开放,预计今年晚些时候将向所有用户推出完整体验。
AI进阶学习路径的个人学习笔记库
ml-retreat 是一个关于人工智能进阶学习的个人学习笔记库。它包含了对机器学习基础的深入理解,以及对于更细微主题的必读/必看资源。这个项目的目标是学习Ilya Sutskever推荐的30篇必读研究论文、Distilled AI的博客、多个AI/ML的视频播放列表,以及深入理解/实现Transformers、LLMs和相关主题。
先进的通用机器人代理
GR-2是一个先进的通用机器人代理,专为多样化和可泛化的机器人操作而设计。它首先在大量互联网视频上进行预训练,以捕捉世界的动态。这种大规模预训练涉及3800万视频剪辑和超过500亿个标记,使GR-2能够在随后的策略学习中跨广泛范围的机器人任务和环境进行泛化。随后,GR-2针对视频生成和动作预测进行了微调,使用机器人轨迹。它展示了令人印象深刻的多任务学习能力,在100多个任务中平均成功率达到97.7%。此外,GR-2在新的、以前未见过的场景中表现出色,包括新的背景、环境、对象和任务。值得注意的是,GR-2随着模型大小的增加而高效扩展,突显了其持续增长和应用的潜力。
统一文本、音乐和动作生成模型
UniMuMo是一个多模态模型,能够将任意文本、音乐和动作数据作为输入条件,生成跨所有三种模态的输出。该模型通过将音乐、动作和文本转换为基于令牌的表示,通过统一的编码器-解码器转换器架构桥接这些模态。它通过微调现有的单模态预训练模型,显著降低了计算需求。UniMuMo在音乐、动作和文本模态的所有单向生成基准测试中都取得了有竞争力的结果。
使用OpenAI实时API与文档进行语音聊天
voice-chat-pdf是一个基于LlamaIndex项目,使用Next.js构建的示例,它通过简单的RAG系统,允许用户通过语音与PDF文档进行交互。这个项目需要OpenAI API密钥来访问实时API,并在项目中生成文档的嵌入向量,以便进行语音交互。它展示了如何将先进的机器学习技术应用于提高文档交互的效率和便捷性。
© 2024 AIbase 备案号:闽ICP备08105208号-14