需求人群:
"Korvus的目标受众是开发者和数据科学家,他们需要在数据库层面上进行高效的RAG操作,同时希望简化搜索架构并提高性能。Korvus的多语言支持和开源特性使其成为技术团队的理想选择,特别是那些已经在使用Postgres作为其数据存储解决方案的团队。"
使用场景示例:
使用Korvus进行大规模文本数据的快速检索和生成。
集成到现有应用程序中,通过单一查询实现复杂的文本处理和搜索功能。
在数据分析和机器学习项目中,使用Korvus进行高效的数据检索和模型训练。
产品特色:
Postgres-Native RAG:直接在数据库中执行复杂的RAG操作,无需外部服务和API调用。
Single Query Efficiency:整个RAG流程,从嵌入生成到文本生成,都在一个SQL查询中执行。
Scalability and Performance:基于Postgres构建,继承了其优秀的可扩展性和性能特性。
Simplified Architecture:用单一强大的查询替代复杂的服务导向架构。
High Performance:消除API调用和数据移动,实现更快的处理和更高的可靠性。
Open Source:开源软件和模型,提供本地Docker运行体验。
Multi-Language Support:支持Python、JavaScript和Rust等多种编程语言。
Unified Pipeline:在一个查询中结合嵌入生成、向量搜索、重排和文本生成。
使用教程:
1. 设置Postgres数据库,并安装pgml和pgvector扩展。
2. 设置KORVUS_DATABASE_URL环境变量,指向你的数据库连接字符串。
3. 初始化Collection和Pipeline,配置所需的文本处理和搜索模型。
4. 插入文档到Collection中,为搜索和生成操作提供数据。
5. 执行RAG查询,结合向量搜索和文本生成,获取所需的结果。
6. 根据需要调整和优化查询,利用Postgres的查询优化能力。
浏览量:23
最新流量情况
月访问量
5.03m
平均访问时长
00:06:29
每次访问页数
5.88
跳出率
37.10%
流量来源
直接访问
52.07%
自然搜索
32.84%
邮件
0.04%
外链引荐
12.88%
社交媒体
2.04%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.85%
德国
3.90%
印度
9.41%
俄罗斯
4.16%
美国
18.95%
一站式RAG搜索SDK
Korvus是一个基于Postgres构建的搜索SDK,它将整个RAG(检索增强生成)流程统一到单一的数据库查询中。它提供了高性能、可定制的搜索能力,同时最小化了基础设施的考虑。Korvus利用PostgresML的pgml扩展和pgvector扩展,将RAG流程压缩在Postgres内部。它支持多语言SDK,包括Python、JavaScript、Rust和C,允许开发者无缝集成到现有的技术栈中。
革命性的检索增强生成系统技术集合。
RAG_Techniques 是一个专注于检索增强生成(Retrieval-Augmented Generation, RAG)系统的技术集合,旨在提升系统的准确性、效率和上下文丰富性。它提供了一个前沿技术的中心,通过社区贡献和协作环境,推动RAG技术的发展和创新。
Google DeepMind开发的高性能AI模型
Gemini 2.0 Flash Experimental是Google DeepMind开发的最新AI模型,旨在提供低延迟和增强性能的智能代理体验。该模型支持原生工具使用,并首次能够原生创建图像和生成语音,代表了AI技术在理解和生成多媒体内容方面的重要进步。Gemini Flash模型家族以其高效的处理能力和广泛的应用场景,成为推动AI领域发展的关键技术之一。
最强大的RWKV模型变体,打破多项英语基准测试。
Q-RWKV-6 32B Instruct Preview是由Recursal AI开发的最新RWKV模型变体,它在多项英语基准测试中超越了之前所有的RWKV、State Space和Liquid AI模型。这个模型通过将Qwen 32B Instruct模型的权重转换到定制的QRWKV6架构中,成功地用RWKV-V6注意力头替换了现有的Transformer注意力头,这一过程是由Recursal AI团队与RWKV和EleutherAI开源社区联合开发的。该模型的主要优点包括在大规模计算成本上的显著降低,以及对环境友好的开源AI技术。
快速高效的生成型AI模型
Command R7B是Cohere公司推出的一款高性能、可扩展的大型语言模型(LLM),专为企业级应用设计。它在保持较小模型体积的同时,提供了一流的速度、效率和质量,能够在普通的GPU、边缘设备甚至CPU上部署,大幅降低了AI应用的生产部署成本。Command R7B在多语言支持、引用验证检索增强生成(RAG)、推理、工具使用和代理行为等方面表现出色,特别适合需要优化速度、成本性能和计算资源的企业使用案例。
前沿AI模型的规模化访问方案
ChatGPT Pro是OpenAI推出的一款月费200美元的产品,它提供了对OpenAI最先进模型和工具的规模化访问权限。该计划包括对OpenAI o1模型的无限访问,以及o1-mini、GPT-4o和高级语音功能。o1 pro模式是o1的一个版本,它使用更多的计算资源来更深入地思考并提供更好的答案,尤其是在解决最困难的问题时。ChatGPT Pro旨在帮助研究人员、工程师和其他日常使用研究级智能的个体提高生产力,并保持在人工智能进步的前沿。
PaliGemma 2是功能强大的视觉语言模型,简单易调优。
PaliGemma 2是Gemma家族中的第二代视觉语言模型,它在性能上进行了扩展,增加了视觉能力,使得模型能够看到、理解和与视觉输入交互,开启了新的可能性。PaliGemma 2基于高性能的Gemma 2模型构建,提供了多种模型尺寸(3B、10B、28B参数)和分辨率(224px、448px、896px)以优化任何任务的性能。此外,PaliGemma 2在化学公式识别、乐谱识别、空间推理和胸部X光报告生成等方面展现出领先的性能。PaliGemma 2旨在为现有PaliGemma用户提供便捷的升级路径,作为即插即用的替代品,大多数任务无需大幅修改代码即可获得性能提升。
开创性的质量与成本新标准的图谱增强型检索增强生成模型
LazyGraphRAG是微软研究院开发的一种新型图谱增强型检索增强生成(RAG)模型,它不需要预先对源数据进行总结,从而避免了可能让一些用户和用例望而却步的前期索引成本。LazyGraphRAG在成本和质量方面具有内在的可扩展性,它通过推迟使用大型语言模型(LLM)来大幅提高答案生成的效率。该模型在本地和全局查询的性能上均展现出色,同时查询成本远低于传统的GraphRAG。LazyGraphRAG的出现,为AI系统在私有数据集上处理复杂问题提供了新的解决方案,具有重要的商业和技术价值。
开放的大型推理模型,解决现实世界问题
Marco-o1是一个开放的大型推理模型,旨在通过先进的技术如Chain-of-Thought (CoT) fine-tuning、Monte Carlo Tree Search (MCTS)、反射机制和创新的推理策略,优化复杂现实世界问题的解决任务。该模型不仅关注数学、物理和编程等有标准答案的学科,还强调开放性问题的解决。Marco-o1由阿里巴巴国际数字商务的MarcoPolo团队开发,具有强大的推理能力,已在多个领域展示出卓越的性能。
Qwen2.5-Coder系列中的0.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该系列模型通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,显著提升了编码能力。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,编码能力与GPT-4o相当。此外,Qwen2.5-Coder还为实际应用如代码代理提供了更全面的基础,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
开发者可使用的Grok系列基础模型API
xAI API提供了对Grok系列基础模型的程序化访问,支持文本和图像输入,具有128,000个token的上下文长度,并支持函数调用和系统提示。该API与OpenAI和Anthropic的API完全兼容,简化了迁移过程。产品背景信息显示,xAI正在进行公共Beta测试,直至2024年底,期间每位用户每月可获得25美元的免费API积分。
AI优先的基础设施API,提供搜索、推荐和RAG服务
Trieve是一个AI优先的基础设施API,结合了语言模型和工具,用于微调排名和相关性,提供一站式的搜索、推荐、RAG和分析解决方案。它能够自动持续改进,基于数十个反馈信号,确保相关性。Trieve支持语义向量搜索、BM25和SPlade全文搜索,以及混合搜索,结合全文搜索和语义向量搜索。此外,它还提供了商品推销和相关性调整功能,帮助用户通过API或无代码仪表板调整搜索结果以实现KPI。Trieve建立在最佳基础之上,使用开源嵌入模型和LLMs,运行在自己的服务器上,确保数据安全。
快速、准确的生产级RAG管道
Vectorize是一个专注于将非结构化数据转化为优化的向量搜索索引的平台,专为检索增强生成(RAG)而设计。它通过连接内容管理系统、文件系统、CRM、协作工具等多种数据源,帮助用户创建提高生产力的辅助系统和创新的客户体验。Vectorize的主要优点包括易于使用、快速部署和高精度的搜索结果,适合需要处理大量数据并希望快速实现AI应用的企业。
IBM Granite 3.0模型,高效能AI语言模型
IBM Granite 3.0模型是一系列高性能的AI语言模型,由IBM开发,并通过Ollama平台提供。这些模型在超过12万亿个token上进行训练,展示了在性能和速度上的显著提升。它们支持基于工具的用例,包括检索增强生成(RAG)、代码生成、翻译和错误修复。IBM Granite 3.0模型包括密集型模型和Mixture of Expert(MoE)模型,后者专为低延迟使用而设计,适合在设备上应用或需要即时推理的场景。
高效能小型语言模型
Zamba2-7B是由Zyphra团队开发的一款小型语言模型,它在7B规模上超越了当前领先的模型,如Mistral、Google的Gemma和Meta的Llama3系列,无论是在质量还是性能上。该模型专为在设备上和消费级GPU上运行以及需要强大但紧凑高效模型的众多企业应用而设计。Zamba2-7B的发布,展示了即使在7B规模上,前沿技术仍然可以被小团队和适度预算所触及和超越。
AIGC 应用快速构建平台
派欧算力云大模型 API 提供易于集成的各模态 API 服务,包括大语言模型、图像、音频、视频等,旨在帮助用户轻松构建专属的 AIGC 应用。该平台拥有丰富的模型资源,支持个性化需求的模型训练和托管,同时保证用户私有模型的保密性。它以高性价比、高吞吐量和高性能推理引擎为特点,适用于多种 AI 应用场景,如聊天机器人、总结摘要、小说生成器等。
先进的多模态AI模型家族
Molmo是一个开放的、最先进的多模态AI模型家族,旨在通过学习指向其感知的内容,实现与物理和虚拟世界的丰富互动,为下一代应用程序提供行动和交互的能力。Molmo通过学习指向其感知的内容,实现了与物理和虚拟世界的丰富互动,为下一代应用程序提供行动和交互的能力。
2024年精选免费AI API平台
Free AI Hunter是一个致力于收集和提供2024年免费AI API以及付费选项的综合性平台。它涵盖了自然语言处理、计算机视觉、机器学习等多种AI API,定期更新数据库以确保信息的最新和准确性。用户可以通过搜索功能轻松找到满足特定需求的AI API。
大型语言模型的详细列表和信息
Models Table 提供了一个包含300多个大型语言模型的列表,这些模型被所有主要的AI实验室使用,包括Amazon Olympus, OpenAI GPT-5, OpenAI GPT-6等。该列表展示了大型语言模型的发展趋势和多样性,对于AI研究者和开发者来说是一个宝贵的资源。
Google 一款轻量级、高效能的AI模型,专为大规模高频任务设计。
Gemini 1.5 Flash是Google DeepMind团队推出的最新AI模型,它通过'蒸馏'过程从更大的1.5 Pro模型中提炼出核心知识和技能,以更小、更高效的模型形式提供服务。该模型在多模态推理、长文本处理、聊天应用、图像和视频字幕生成、长文档和表格数据提取等方面表现出色。它的重要性在于为需要低延迟和低成本服务的应用提供了解决方案,同时保持了高质量的输出。
自动化文档处理,将非结构化内容转化为结构化可操作数据
Hyperscience是一款领先的企业AI平台,帮助您自动化文档处理流程,将非结构化内容转化为结构化可操作数据。它使用先进的机器学习和自然语言处理技术,能够准确地识别和提取关键信息,并将其转化为可用的数据。Hyperscience的优势在于高度准确的识别能力、高度可扩展的处理能力和快速部署的灵活性。该产品适用于各种行业和场景,包括金融、保险、医疗等。具体定价和定位请参考官方网站。
Docker推出的人工智能应用开发解决方案
Docker GenAI Stack是一个面向开发者的人工智能应用开发解决方案。它整合了各大领先的AI技术,只需几次点击就可以部署完整的AI应用栈,实现代码级的AI集成。GenAI Stack内置预配置的大型语言模型,提供Ollama管理,采用Neo4j作为默认数据库,可实现知识图谱和向量搜索。还配备了LangChain框架用于编排和调试,以及全面的技术支持和社区资源。GenAI Stack使AI应用开发变得简单高效,开发者可以快速构建实用的AI解决方案。
AI研究论文记忆助手
PaperClip是AI研究者的第二大脑,用于机器学习、计算机视觉和自然语言处理论文的回顾和记忆。它可以帮助您记忆来自机器学习、计算机视觉和自然语言处理论文的详细信息,包括重要发现和论文细节。您可以从任何地方记忆,无论是AI研究论文、机器学习博客文章还是新闻报道。PaperClip的AI在本地运行,不会向任何服务器发送数据。它可以将您的记忆保存在本地,并提供简单的搜索功能,让您随时找回重要发现。PaperClip支持离线搜索,即使没有互联网连接也可以进行搜索。您还可以随时清理您的数据,一键重置保存的信息。PaperClip以Svelte和Hugo Duprez为基础开发。
Xyne 是一款开源的、以 AI 为先的搜索与答案引擎,专为工作场景设计。
Xyne 是一款面向工作场景的 AI 驱动的搜索与答案引擎。它能够整合企业内部的各种应用数据,提供精准的信息检索和答案生成服务。Xyne 的核心技术包括语义图谱和基于上下文的检索增强(RAG),能够理解知识、人员、沟通和项目之间的关系,从而提供更全面的搜索结果。其主要优点包括开源、隐私保护、灵活部署(本地、云端或设备端)以及与现有权限体系的无缝兼容。Xyne 定位为一个隐私优先、开源的工作 AI 平台,适合需要高效信息检索和知识管理的企业和团队。
AI原生的商业智能平台,通过自然语言生成数据可视化和仪表板
Basedash是一个AI原生的商业智能平台,它通过自然语言处理技术,帮助用户快速生成数据可视化图表和仪表板。该平台无需用户编写SQL代码,即可从550多个数据源中提取数据,并生成直观的图表。Basedash的主要优点是其强大的AI驱动功能,能够理解用户的自然语言需求,自动调整和优化数据查询。它适用于各种规模的企业,帮助他们快速获取业务洞察。目前,Basedash处于Beta阶段,用户可以免费试用。
一个用于在网站上提问的Chrome扩展程序,支持本地运行和向量存储。
Site RAG 是一款 Chrome 扩展程序,旨在通过自然语言处理技术帮助用户在浏览网页时快速获取问题答案。它支持将当前页面内容作为上下文进行查询,还能将整个网站内容索引到向量数据库中,以便后续进行检索增强生成(RAG)。该产品完全在本地浏览器运行,确保用户数据安全,同时支持连接本地运行的 Ollama 实例进行推理。它主要面向需要快速从网页内容中提取信息的用户,如开发者、研究人员和学生。目前该产品免费提供,适合希望在浏览网页时获得即时帮助的用户。
Heron的AI技术可自动化处理文档密集型工作,提升工作效率。
Heron是一款专注于自动化文档处理的生产力工具。它通过先进的AI技术,能够快速接收、分类、解析和同步文档数据,直接将结构化数据同步到用户的CRM系统中。Heron的主要优点包括高效的数据处理能力、强大的机器学习支持以及与现有业务流程的无缝集成。该产品主要面向需要处理大量文档的中小企业融资、法律、保险等行业,旨在帮助用户节省时间、降低成本并提高决策效率。Heron的定价策略灵活,具体价格根据客户需求定制,适合希望通过技术提升工作效率的企业。
AI研究资源导航网站,提供AI研究资源、文档和实践案例
DeepResearch123是一个AI研究资源导航平台,旨在为研究人员、开发者和爱好者提供丰富的AI研究资源、文档和实践案例。该平台涵盖了机器学习、深度学习和人工智能等多个领域的最新研究成果,帮助用户快速了解和掌握相关知识。其主要优点是资源丰富、分类清晰,便于用户查找和学习。该平台面向对AI研究感兴趣的各类人群,无论是初学者还是专业人士都能从中受益。目前平台免费开放,用户无需付费即可使用所有功能。
© 2025 AIbase 备案号:闽ICP备08105208号-14