需求人群:
"RAGElo主要面向需要评估和选择最优RAG-based LLM代理的开发者和研究人员。它特别适合于那些在生产环境中需要快速原型设计和整合生成性LLMs,同时面临评估挑战的用户。"
使用场景示例:
使用RAGElo评估不同RAG管道对问答任务的影响
利用RAGElo进行LLM代理的批量评估,以优化问答系统
将RAGElo集成到生产流程中,自动评估和选择最佳的LLM代理
产品特色:
使用Elo评级系统评估RAG增强的LLM代理
支持Python库和独立CLI应用程序两种使用方式
提供自定义提示和元数据注入功能,以增强评估过程
支持批量评估,允许同时评估多个响应
CLI模式下,期望输入文件为CSV格式,简化数据输入
提供工具组件,如检索评估器、答案注释器和代理排名器
支持Python 3.8,适应最新的编程环境
使用教程:
1. 安装RAGElo:使用pip命令安装RAGElo库或CLI应用程序。
2. 导入RAGElo:在Python代码中导入RAGElo模块。
3. 初始化评估器:根据需要选择适当的评估器并进行初始化。
4. 进行评估:使用evaluate或batch_evaluate方法对单个或多个响应进行评估。
5. 自定义提示:根据评估需求,编写自定义提示并注入元数据。
6. 分析结果:查看评估结果,根据排名选择最优的LLM代理。
7. 批量处理:如果需要评估大量数据,使用CLI模式并准备相应的CSV文件。
浏览量:39
最新流量情况
月访问量
4.91m
平均访问时长
00:06:18
每次访问页数
5.57
跳出率
37.92%
流量来源
直接访问
51.73%
自然搜索
32.88%
邮件
0.04%
外链引荐
13.01%
社交媒体
2.27%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.81%
德国
3.69%
印度
9.16%
俄罗斯
4.47%
美国
18.04%
RAG-based LLM agents的Elo排名工具
RAGElo是一个工具集,使用Elo评分系统帮助选择最佳的基于检索增强生成(RAG)的大型语言模型(LLM)代理。随着生成性LLM在生产中的原型设计和整合变得更加容易,评估仍然是解决方案中最具有挑战性的部分。RAGElo通过比较不同RAG管道和提示对多个问题的答案,计算不同设置的排名,提供了一个良好的概览,了解哪些设置有效,哪些无效。
一个用于可视化和探索微软GraphRAG工具的网络工具。
GraphRAG Visualizer是一个基于网络的工具,旨在可视化和探索微软GraphRAG工具产生的数据。GraphRAG是微软开发的一种用于生成图结构数据的技术,GraphRAG Visualizer通过让用户上传parquet文件,无需额外软件或脚本即可轻松查看和分析数据。该工具的主要优点包括图形可视化、数据表格展示、搜索功能以及本地处理数据,确保数据安全和隐私。
AI驱动的多智能体数据分析系统
AI-Data-Analysis-MultiAgent是一个高级的AI驱动研究助理系统,利用多个专业智能体协助进行数据分析、可视化和报告生成等任务。该系统采用LangChain、OpenAI的GPT模型和LangGraph处理复杂的研究流程,集成多样化的AI架构以实现最佳性能。该系统的独特之处在于集成了一个专门的Note Taker智能体,通过维护项目的简洁而全面的记录,可以降低计算开销,提高不同分析阶段之间的上下文保持能力,并实现更连贯一致的分析结果。
快速高效的非结构化数据提取工具
Extractous是一个用Rust编写的非结构化数据提取工具,提供多语言绑定。它专注于从各种文件类型(如PDF、Word、HTML等)中提取内容和元数据,并且性能优异,内存占用低。Extractous通过原生代码执行实现快速处理速度和低内存使用,支持多种文件格式,并集成了Apache Tika和tesseract-ocr技术,使其能够处理广泛的文件类型并进行OCR识别。该工具的开源性质和Apache 2.0许可使其可以免费用于商业用途,适合需要处理大量文档数据的企业和开发者。
A tool for integrating private data with AI large language models.
Dabarqus是一个Retrieval Augmented Generation(RAG)框架,它允许用户将私有数据实时提供给大型语言模型(LLM)。这个工具通过提供REST API、SDKs和CLI工具,使得用户能够轻松地将各种数据源(如PDF、电子邮件和原始数据)存储到语义索引中,称为“记忆库”。Dabarqus支持LLM风格的提示,使用户能够以简单的方式与记忆库进行交互,而无需构建特殊的查询或学习新的查询语言。此外,Dabarqus还支持多语义索引(记忆库)的创建和使用,使得数据可以根据主题、类别或其他分组方式进行组织。Dabarqus的产品背景信息显示,它旨在简化私有数据与AI语言模型的集成过程,提高数据检索的效率和准确性。
一个可以本地与多个PDF文件进行对话的聊天机器人。
rag-chatbot是一个基于人工智能技术的聊天机器人模型,它能够让用户通过自然语言与多个PDF文件进行交互。该模型使用了最新的机器学习技术,如Huggingface和Ollama,来实现对PDF内容的理解和回答生成。它的重要性在于能够处理大量文档信息,为用户提供快速、准确的问答服务。产品背景信息表明,这是一个开源项目,旨在通过技术创新提升文档处理的效率。目前该项目是免费的,主要面向开发者和技术爱好者。
终端中的个人AI助手,具备本地工具。
gptme是一个运行在终端的个人AI助手,它装备了本地工具,可以编写代码、使用终端、浏览网页、视觉识别等。它是一个不受软件、互联网访问、超时或隐私问题限制的ChatGPT“代码解释器”的本地替代方案。
一个简单而强大的Python库,用于使用大型语言模型(LLMs)。
promptic是一个轻量级、基于装饰器的Python库,它通过litellm简化了与大型语言模型(LLMs)交互的过程。使用promptic,你可以轻松创建提示,处理输入参数,并从LLMs接收结构化输出,仅需几行代码。
无需编码即可构建生产就绪的LLM应用程序
Epsilla是一个无需编码的RAG即服务(RAG-as-a-Service)平台,它允许用户基于私有或公共数据构建生产就绪的大型语言模型(Large Language Model, LLM)应用程序。该平台提供了一站式服务,包括数据管理、RAG工具、CI/CD风格的评估以及企业级安全措施,旨在降低总拥有成本(TCO),提高查询速度和吞吐量,同时确保信息的时效性和安全性。
AI提示工程师,优化大型语言模型应用
Weavel是一个AI提示工程师,它通过追踪、数据集管理、批量测试和评估等功能,帮助用户优化大型语言模型(LLM)的应用。Weavel与Weavel SDK结合使用,能够自动记录并添加LLM生成的数据到您的数据集中,实现无缝集成和针对特定用例的持续改进。此外,Weavel能够自动生成评估代码,并使用LLM作为复杂任务的公正裁判,简化评估流程,确保准确、细致的性能指标。
革命性的检索增强生成系统技术集合。
RAG_Techniques 是一个专注于检索增强生成(Retrieval-Augmented Generation, RAG)系统的技术集合,旨在提升系统的准确性、效率和上下文丰富性。它提供了一个前沿技术的中心,通过社区贡献和协作环境,推动RAG技术的发展和创新。
AI代理工具集,赋能复杂任务处理。
Composio是一个为AI代理提供高质量工具和集成的平台,它简化了代理的认证、准确性和可靠性问题,使得开发者能够通过一行代码集成多种工具和框架。它支持100多种工具,覆盖了GitHub、Notion、Linear等90多个平台,提供了包括软件操作、操作系统交互、浏览器功能、搜索、软件开发环境(SWE)以及即席代理数据(RAG)等多种功能。Composio还支持六种不同的认证协议,能够显著提高代理调用工具的准确性。此外,Composio可以作为后端服务嵌入到应用程序中,为所有用户和代理管理认证和集成,保持一致的体验。
AI驱动的相册,自动生成图像元数据并与之对话。
Album AI是一个实验性项目,它使用gpt-4o-mini作为视觉模型,自动识别相册中图像文件的元数据,并利用RAG技术实现与相册的对话。它既可以作为传统相册使用,也可以作为图像知识库,辅助大型语言模型进行内容生成。
低代码构建多Agent大模型应用的开发工具
LazyLLM是一个致力于简化人工智能应用构建流程的开发工具,它通过提供低代码的解决方案,使得开发者即使不了解大模型也能轻松组装包含多个Agent的AI应用。LazyLLM支持一键部署所有模块,跨平台兼容,自动进行网格搜索参数优化,以及高效的模型微调,从而提升应用效果。
AI原生数据应用开发框架
DB-GPT是一个开源的AI原生数据应用开发框架,利用AWEL(Agentic Workflow Expression Language)和代理(agent)技术,简化了大型模型应用与数据的结合。它通过多模型管理、Text2SQL效果优化、RAG框架优化、多代理框架协作等技术能力,使企业和开发者能够以更少的代码构建定制化应用。DB-GPT在数据3.0时代,基于模型和数据库,为构建企业级报告分析和业务洞察提供了基础数据智能技术。
本地语音聊天机器人,保护隐私,无需联网。
june是一个结合了Ollama、Hugging Face Transformers和Coqui TTS Toolkit的本地语音聊天机器人。它提供了一种灵活、注重隐私的解决方案,可以在本地机器上进行语音辅助交互,确保没有数据被发送到外部服务器。产品的主要优点包括无需联网即可使用、保护用户隐私、支持多种交互模式等。
用于微调Meta Llama模型的库和示例脚本集合
llama-recipes是Meta Llama模型的配套仓库,旨在提供一个可扩展的库,用于微调Meta Llama模型,并提供一些示例脚本和笔记本,以便快速开始使用模型在各种用例中,包括领域适应的微调和构建基于LLM的应用程序。
低代码生成AI应用程序的生成性AI RAG工具包。
create-tsi是一个生成性AI RAG(Retrieval-Augmented Generation)工具包,用于低代码生成AI应用程序。它利用LlamaIndex和T-Systems在Open Telekom Cloud上托管的大型语言模型(LLMs),简化了AI应用程序的创建过程,使其变得快捷、灵活。用户可以使用create-tsi生成聊天机器人、编写代理并针对特定用例进行定制。
拖放方式创建agent工作群用于自定义业务逻辑
React Flow是一个开源的可视化编辑器,允许用户通过拖放的方式创建agent工作群,用于自定义业务逻辑。用户可以从图库中拖放agent到工作区,连接它们,定义初始任务,导出Python脚本在本地机器上运行。我们通过定制的操作系统为企业提供云端支持,让他们可以运行LLM。欢迎联系我们的企业支持团队了解更多信息。
简化LLM和RAG模型输出评估,提供对定性指标的洞察
Algomax简化LLM和RAG模型的评估,优化提示开发,并通过直观的仪表板提供对定性指标的独特洞察。我们的评估引擎精确评估LLM,并通过广泛测试确保可靠性。平台提供了全面的定性和定量指标,帮助您更好地理解模型的行为,并提供具体的改进建议。Algomax的用途广泛,适用于各个行业和领域。
Langroid是一个基于Python的轻量级LLM框架
Langroid是一个轻量级、可扩展和原则性的Python框架,可以轻松地构建基于LLM的应用程序。您可以设置代理,为它们配备可选组件(LLM、向量存储和方法),分配它们任务,并让他们通过交换消息协作解决问题。这个多代理范例的灵感来自Actor框架(但您不需要了解任何关于这个的知识!)。Langroid提供了一个全新的LLM应用程序开发方式,在简化开发人员体验方面进行了深思熟虑;它不使用Langchain。我们欢迎贡献--请参阅贡献文档以获取贡献想法。
一个由LLM驱动的数据处理系统。
DocETL是一个强大的系统,用于处理和分析大量文本数据。它通过利用大型语言模型(LLM)的能力,能够自动优化数据处理流程,并将LLM与非LLM操作无缝集成。该系统的主要优点包括其声明式的YAML定义方式,使得用户可以轻松地定义复杂的数据处理流程。此外,DocETL还提供了一个交互式的playground,方便用户进行提示工程的实验。产品背景信息显示,DocETL在2024年12月推出了DocWrangler,这是一个新的交互式playground,旨在简化提示工程。价格方面,虽然没有明确标出,但从提供的使用案例来看,运行和优化数据处理流程的成本相对较低。产品定位主要是为需要处理大量文本数据并从中提取有价值信息的用户提供服务。
一个开源的交互式开发环境,用于构建和优化基于LLM的数据处理管道。
DocWrangler是一个开源的交互式开发环境,旨在简化构建和优化基于大型语言模型(LLM)的数据处理管道的过程。它提供即时反馈、可视化探索工具和AI辅助功能,帮助用户更容易地探索数据、实验不同操作并根据发现优化管道。该产品基于DocETL框架构建,适用于处理非结构化数据,如文本分析、信息提取等。它不仅降低了LLM数据处理的门槛,还提高了工作效率,使用户能够更有效地利用LLM的强大功能。
Dria-Agent-α是基于Python的大型语言模型工具交互框架。
Dria-Agent-α是Hugging Face推出的大型语言模型(LLM)工具交互框架。它通过Python代码来调用工具,与传统的JSON模式相比,能更充分地发挥LLM的推理能力,使模型能够以更接近人类自然语言的方式进行复杂问题的解决。该框架利用Python的流行性和接近伪代码的语法,使LLM在代理场景中表现更佳。Dria-Agent-α的开发使用了合成数据生成工具Dria,通过多阶段管道生成逼真的场景,训练模型进行复杂问题解决。目前已有Dria-Agent-α-3B和Dria-Agent-α-7B两个模型在Hugging Face上发布。
高质量的数据集、工具和概念,用于大型语言模型的微调。
mlabonne/llm-datasets 是一个专注于大型语言模型(LLM)微调的高质量数据集和工具的集合。该产品为研究人员和开发者提供了一系列经过精心筛选和优化的数据集,帮助他们更好地训练和优化自己的语言模型。其主要优点在于数据集的多样性和高质量,能够覆盖多种使用场景,从而提高模型的泛化能力和准确性。此外,该产品还提供了一些工具和概念,帮助用户更好地理解和使用这些数据集。其背景信息包括由 mlabonne 创建和维护,旨在推动 LLM 领域的发展。
FlashInfer是一个用于大型语言模型服务的高性能GPU内核库。
FlashInfer是一个专为大型语言模型(LLM)服务而设计的高性能GPU内核库。它通过提供高效的稀疏/密集注意力机制、负载平衡调度、内存效率优化等功能,显著提升了LLM在推理和部署时的性能。FlashInfer支持PyTorch、TVM和C++ API,易于集成到现有项目中。其主要优点包括高效的内核实现、灵活的自定义能力和广泛的兼容性。FlashInfer的开发背景是为了满足日益增长的LLM应用需求,提供更高效、更可靠的推理支持。
用于生成LLM训练和推理的网站内容整合文本文件的工具
llmstxt-generator 是一个用于生成LLM(大型语言模型)训练和推理所需的网站内容整合文本文件的工具。它通过爬取网站内容,将其合并成一个文本文件,支持生成标准的llms.txt和完整的llms-full.txt版本。该工具由firecrawl_dev提供支持进行网页爬取,并使用GPT-4-mini进行文本处理。其主要优点包括无需API密钥即可使用基本功能,同时提供Web界面和API访问,方便用户快速生成所需的文本文件。
将本地文件转换为大型语言模型的结构化提示工具
CodebaseToPrompt 是一个简单工具,能够将本地目录转换为大型语言模型(LLM)的结构化提示。它帮助用户选择需要包含或忽略的文件,然后以可以直接复制到 LLM 中的格式输出,适用于代码审查、分析或文档生成。该工具的主要优点在于其交互性强、操作简便,并且能够在浏览器中直接使用,无需上传任何文件,确保了数据的安全性和隐私性。产品背景信息显示,它是由 path-find-er 团队开发,旨在提高开发者在使用 LLM 进行代码相关任务时的效率。
© 2025 AIbase 备案号:闽ICP备08105208号-14