浏览量:39
简化LLM和RAG模型输出评估,提供对定性指标的洞察
Algomax简化LLM和RAG模型的评估,优化提示开发,并通过直观的仪表板提供对定性指标的独特洞察。我们的评估引擎精确评估LLM,并通过广泛测试确保可靠性。平台提供了全面的定性和定量指标,帮助您更好地理解模型的行为,并提供具体的改进建议。Algomax的用途广泛,适用于各个行业和领域。
快速高效的非结构化数据提取工具
Extractous是一个用Rust编写的非结构化数据提取工具,提供多语言绑定。它专注于从各种文件类型(如PDF、Word、HTML等)中提取内容和元数据,并且性能优异,内存占用低。Extractous通过原生代码执行实现快速处理速度和低内存使用,支持多种文件格式,并集成了Apache Tika和tesseract-ocr技术,使其能够处理广泛的文件类型并进行OCR识别。该工具的开源性质和Apache 2.0许可使其可以免费用于商业用途,适合需要处理大量文档数据的企业和开发者。
A tool for integrating private data with AI large language models.
Dabarqus是一个Retrieval Augmented Generation(RAG)框架,它允许用户将私有数据实时提供给大型语言模型(LLM)。这个工具通过提供REST API、SDKs和CLI工具,使得用户能够轻松地将各种数据源(如PDF、电子邮件和原始数据)存储到语义索引中,称为“记忆库”。Dabarqus支持LLM风格的提示,使用户能够以简单的方式与记忆库进行交互,而无需构建特殊的查询或学习新的查询语言。此外,Dabarqus还支持多语义索引(记忆库)的创建和使用,使得数据可以根据主题、类别或其他分组方式进行组织。Dabarqus的产品背景信息显示,它旨在简化私有数据与AI语言模型的集成过程,提高数据检索的效率和准确性。
一个可以本地与多个PDF文件进行对话的聊天机器人。
rag-chatbot是一个基于人工智能技术的聊天机器人模型,它能够让用户通过自然语言与多个PDF文件进行交互。该模型使用了最新的机器学习技术,如Huggingface和Ollama,来实现对PDF内容的理解和回答生成。它的重要性在于能够处理大量文档信息,为用户提供快速、准确的问答服务。产品背景信息表明,这是一个开源项目,旨在通过技术创新提升文档处理的效率。目前该项目是免费的,主要面向开发者和技术爱好者。
终端中的个人AI助手,具备本地工具。
gptme是一个运行在终端的个人AI助手,它装备了本地工具,可以编写代码、使用终端、浏览网页、视觉识别等。它是一个不受软件、互联网访问、超时或隐私问题限制的ChatGPT“代码解释器”的本地替代方案。
无需编码即可构建生产就绪的LLM应用程序
Epsilla是一个无需编码的RAG即服务(RAG-as-a-Service)平台,它允许用户基于私有或公共数据构建生产就绪的大型语言模型(Large Language Model, LLM)应用程序。该平台提供了一站式服务,包括数据管理、RAG工具、CI/CD风格的评估以及企业级安全措施,旨在降低总拥有成本(TCO),提高查询速度和吞吐量,同时确保信息的时效性和安全性。
革命性的检索增强生成系统技术集合。
RAG_Techniques 是一个专注于检索增强生成(Retrieval-Augmented Generation, RAG)系统的技术集合,旨在提升系统的准确性、效率和上下文丰富性。它提供了一个前沿技术的中心,通过社区贡献和协作环境,推动RAG技术的发展和创新。
AI驱动的相册,自动生成图像元数据并与之对话。
Album AI是一个实验性项目,它使用gpt-4o-mini作为视觉模型,自动识别相册中图像文件的元数据,并利用RAG技术实现与相册的对话。它既可以作为传统相册使用,也可以作为图像知识库,辅助大型语言模型进行内容生成。
低代码构建多Agent大模型应用的开发工具
LazyLLM是一个致力于简化人工智能应用构建流程的开发工具,它通过提供低代码的解决方案,使得开发者即使不了解大模型也能轻松组装包含多个Agent的AI应用。LazyLLM支持一键部署所有模块,跨平台兼容,自动进行网格搜索参数优化,以及高效的模型微调,从而提升应用效果。
RAG-based LLM agents的Elo排名工具
RAGElo是一个工具集,使用Elo评分系统帮助选择最佳的基于检索增强生成(RAG)的大型语言模型(LLM)代理。随着生成性LLM在生产中的原型设计和整合变得更加容易,评估仍然是解决方案中最具有挑战性的部分。RAGElo通过比较不同RAG管道和提示对多个问题的答案,计算不同设置的排名,提供了一个良好的概览,了解哪些设置有效,哪些无效。
AI原生数据应用开发框架
DB-GPT是一个开源的AI原生数据应用开发框架,利用AWEL(Agentic Workflow Expression Language)和代理(agent)技术,简化了大型模型应用与数据的结合。它通过多模型管理、Text2SQL效果优化、RAG框架优化、多代理框架协作等技术能力,使企业和开发者能够以更少的代码构建定制化应用。DB-GPT在数据3.0时代,基于模型和数据库,为构建企业级报告分析和业务洞察提供了基础数据智能技术。
低代码生成AI应用程序的生成性AI RAG工具包。
create-tsi是一个生成性AI RAG(Retrieval-Augmented Generation)工具包,用于低代码生成AI应用程序。它利用LlamaIndex和T-Systems在Open Telekom Cloud上托管的大型语言模型(LLMs),简化了AI应用程序的创建过程,使其变得快捷、灵活。用户可以使用create-tsi生成聊天机器人、编写代理并针对特定用例进行定制。
AI驱动的多智能体数据分析系统
AI-Data-Analysis-MultiAgent是一个高级的AI驱动研究助理系统,利用多个专业智能体协助进行数据分析、可视化和报告生成等任务。该系统采用LangChain、OpenAI的GPT模型和LangGraph处理复杂的研究流程,集成多样化的AI架构以实现最佳性能。该系统的独特之处在于集成了一个专门的Note Taker智能体,通过维护项目的简洁而全面的记录,可以降低计算开销,提高不同分析阶段之间的上下文保持能力,并实现更连贯一致的分析结果。
基于Qwen>=2.0的Agent框架和应用,支持函数调用、代码解释器、RAG和Chrome扩展。
Qwen-Agent是一个基于Qwen>=2.0构建的Agent框架,它具备指令遵循、工具使用、规划和记忆能力。该框架提供了如浏览器助手、代码解释器和自定义助手等示例应用。Qwen-Agent的主要优点包括其高度的可扩展性和模块化设计,允许开发者根据需要集成不同的工具和功能。产品背景信息显示,Qwen-Agent旨在为开发者提供一个强大的工具集,以构建和部署基于大型语言模型的应用程序。Qwen-Agent在GitHub上开源,允许社区贡献和协作。
生成llms.txt文件,帮助LLMs在推理时使用您的网站。
SiteSpeakAI - llms.txt Generator是一个在线工具,用于生成llms.txt文件。这个文件为大型语言模型(LLMs)提供了必要的信息,以便它们能够在推理时更有效地使用您的网站。该工具的重要性在于它能够帮助网站管理员和开发者优化他们的网站,使其更适合与人工智能语言模型的交互,提高网站的功能和用户体验。SiteSpeakAI提供了一个免费的在线生成器,用户可以快速生成所需的llms.txt文件,无需复杂的编程知识。
统一接口访问多个生成式AI服务
aisuite是一个提供简单、统一接口以访问多个生成式AI服务的产品。它允许开发者通过标准化的接口使用多个大型语言模型(LLM),并比较结果。作为一个轻量级的Python客户端库包装器,aisuite使得创作者可以在不改变代码的情况下,无缝切换并测试来自不同LLM提供商的响应。目前,该库主要关注聊天完成功能,并计划在未来扩展更多用例。
MCP是一个开放协议,用于无缝集成大型语言模型应用与外部数据源和工具。
Model Context Protocol(MCP)是一个开放协议,它允许大型语言模型(LLM)应用与外部数据源和工具之间实现无缝集成。无论是构建AI驱动的集成开发环境(IDE)、增强聊天界面还是创建自定义AI工作流,MCP都提供了一种标准化的方式,将LLM与它们所需的上下文连接起来。MCP的主要优点包括标准化的连接方式、易于集成和扩展、以及强大的社区支持。产品背景信息显示,MCP旨在促进开发者构建更加智能和高效的应用程序,特别是在AI和机器学习领域。MCP目前是免费提供给开发者使用的。
长文本摘要工具,将书籍和文档自动转换成要点笔记。
ollama-ebook-summary 是一个利用大型语言模型(LLM)为长文本创建要点笔记摘要的项目。该项目特别适用于epub和pdf格式的书籍,能够自动化提取章节并将其分割成约2000个token的小块,以提高响应的粒度。产品背景是创建者希望快速总结一系列书籍,以整合心理学理论和实践,并基于此信息构建连贯的论点。该工具的主要优点包括提高内容梳理效率、支持自定义问题查询、以及生成每个文本部分的详细摘要。
AI代理的人工在环反馈、输入和审批API及SDK
HumanLayer是一个API和SDK,它允许AI代理联系人类以获取反馈、输入和审批。它通过审批工作流程在Slack、电子邮件等渠道上确保对高风险功能调用的人类监督,支持将您选择的LLM和框架与AI代理安全连接到世界。HumanLayer得到了Y Combinator的支持,并且与多种流行的框架和LLM兼容,包括OpenAI、Claude、Llama3.1等。它提供了一个平台,通过人工在环的方式,增强AI代理的能力,提高其可靠性和效率。HumanLayer的价格策略包括免费、付费和定制企业方案,满足不同用户的需求。
创建您自己的高级搜索引擎,结合AI技术。
Inquir是一个强大的工具,用于创建个性化的搜索引擎,根据您的数据量身定制。它解锁了诸如自定义搜索解决方案、数据组合、AI驱动的检索增强生成(RAG)系统以及上下文感知搜索功能等强大功能。通过启动您的引擎或安排演示,迈向改善用户体验的第一步。
轻量级、快速的RAG文本分块库
Chonkie是一个为检索增强型生成(RAG)应用设计的文本分块库,它轻量级、快速,并且易于使用。该库提供了多种文本分块方法,支持多种分词器,并且具有高性能。Chonkie的主要优点包括丰富的功能、易用性、快速处理速度、广泛的支持和轻量级的设计。它适用于需要高效处理文本数据的开发者和研究人员,特别是在自然语言处理和机器学习领域。Chonkie是开源的,遵循MIT许可证,可以免费使用。
Sidecar是Aide编辑器的AI大脑,与编辑器协同工作。
Sidecar是为Aide编辑器设计的人工智能插件,它在本地机器上与编辑器一起工作,负责创建提示、与大型语言模型(LLM)通信以及处理它们之间的所有交互。Sidecar的主要优点包括提高编程效率、智能代码补全和集成化的AI辅助开发。它基于Rust语言开发,确保了性能和安全性。Sidecar适用于需要在本地机器上进行高效编程和代码管理的开发者。
AI内容审核服务,保护下游部署安全。
Mistral Moderation API是Mistral AI推出的内容审核服务,旨在帮助用户检测和过滤不受欢迎的文本内容。该API是Le Chat中使用的审核服务的同一技术,现在对外开放,以便用户可以根据特定的应用和安全标准定制和使用这一工具。该模型是一个基于LLM(大型语言模型)的分类器,能够将文本输入分类到9个预定义的类别中。Mistral AI的这一API支持原生多语言,特别针对阿拉伯语、中文、英语、法语、德语、意大利语、日语、韩语、葡萄牙语、俄语和西班牙语进行了训练。该API的主要优点包括提高审核的可扩展性和鲁棒性,以及通过技术文档提供的详细政策定义和启动指南,帮助用户有效实施系统级的安全防护。
利用LLM读取源代码并提供问题解答
askrepo是一个基于LLM(大型语言模型)的源代码阅读工具,它能够读取Git管理的文本文件内容,发送至Google Gemini API,并根据指定的提示提供问题的答案。该产品代表了自然语言处理和机器学习技术在代码分析领域的应用,其主要优点包括能够理解和解释代码的功能,帮助开发者快速理解新项目或复杂代码库。产品背景信息显示,askrepo适用于需要深入理解代码的场景,尤其是在代码审查和维护阶段。该产品是开源的,可以免费使用。
高精度将图片或PDF转换为Markdown文本或JSON结构化文档的API
pdf-extract-api是一个使用现代OCR技术和Ollama支持的模型将任何文档或图片转换为结构化的JSON或Markdown文本的API。它使用FastAPI构建,并使用Celery进行异步任务处理,Redis用于缓存OCR结果。该API无需云或外部依赖,所有处理都在本地开发或服务器环境中完成,确保数据安全。它支持PDF到Markdown的高精度转换,包括表格数据、数字或数学公式,并且可以使用Ollama支持的模型进行PDF到JSON的转换。此外,该API还支持LLM改进OCR结果,去除PDF中的个人身份信息(PII),以及分布式队列处理和缓存。
国内领先的LLM一站式企业解决方案
Chat Nio是一个国内领先的LLM(Large Language Model)一站式企业解决方案,提供强大的AI集成工具,支持35+主流AI模型,涵盖文本生成、图像创作、音频处理和视频编辑等领域,并支持私有化部署和中转服务。它为开发者、个人用户和企业提供定制化的AI解决方案,包括但不限于多租户令牌分发、计费管理系统、深度集成Midjourney Proxy Plus绘画功能、全方位调用日志记录系统等。Chat Nio以其多功能性、灵活性和易用性,满足企业和团队的多样化需求,帮助他们高效开发和部署AI应用。
开源全栈平台,为打造顶级LLM产品提供支持
Laminar是一个开源的全栈平台,专注于从第一性原理出发进行AI工程。它帮助用户收集、理解和使用数据,以提高大型语言模型(LLM)应用的质量。Laminar支持对文本和图像模型的追踪,并且即将支持音频模型。产品的主要优点包括零开销的可观测性、在线评估、数据集构建和LLM链管理。Laminar完全开源,易于自托管,适合需要构建和管理LLM产品的开发者和团队。
AI优先的基础设施API,提供搜索、推荐和RAG服务
Trieve是一个AI优先的基础设施API,结合了语言模型和工具,用于微调排名和相关性,提供一站式的搜索、推荐、RAG和分析解决方案。它能够自动持续改进,基于数十个反馈信号,确保相关性。Trieve支持语义向量搜索、BM25和SPlade全文搜索,以及混合搜索,结合全文搜索和语义向量搜索。此外,它还提供了商品推销和相关性调整功能,帮助用户通过API或无代码仪表板调整搜索结果以实现KPI。Trieve建立在最佳基础之上,使用开源嵌入模型和LLMs,运行在自己的服务器上,确保数据安全。
© 2024 AIbase 备案号:闽ICP备08105208号-14