需求人群:
"用于评估和优化 LLM 应用的性能和输出"
使用场景示例:
为聊天机器人编写测试用例,评估其回答的准确性
比较不同 LLM 配置的性能,选择最佳配置
通过分析仪表盘识别 LLM 工作流中的瓶颈
产品特色:
定义预期输出
衡量 LLM 性能
差异跟踪
分析功能
A/B 测试
输出分类
报告仪表盘
数据集生成
详细监控
浏览量:17
最新流量情况
月访问量
98.73k
平均访问时长
00:02:08
每次访问页数
2.16
跳出率
51.29%
流量来源
直接访问
36.07%
自然搜索
50.61%
邮件
0.07%
外链引荐
7.94%
社交媒体
4.85%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
英国
3.60%
印度
4.83%
韩国
4.20%
俄罗斯
4.43%
美国
38.33%
开源评估基础设施,为 LLM 提供信心
Confident AI 是一个开源的评估基础设施,为 LLM(Language Model)提供信心。用户可以通过编写和执行测试用例来评估自己的 LLM 应用,并使用丰富的开源指标来衡量其性能。通过定义预期输出并与实际输出进行比较,用户可以确定 LLM 的表现是否符合预期,并找出改进的方向。Confident AI 还提供了高级的差异跟踪功能,帮助用户优化 LLM 配置。此外,用户还可以利用全面的分析功能,识别重点关注的用例,实现 LLM 的有信心地投产。Confident AI 还提供了强大的功能,帮助用户自信地将 LLM 投入生产,包括 A/B 测试、评估、输出分类、报告仪表盘、数据集生成和详细监控。
开源全栈平台,为打造顶级LLM产品提供支持
Laminar是一个开源的全栈平台,专注于从第一性原理出发进行AI工程。它帮助用户收集、理解和使用数据,以提高大型语言模型(LLM)应用的质量。Laminar支持对文本和图像模型的追踪,并且即将支持音频模型。产品的主要优点包括零开销的可观测性、在线评估、数据集构建和LLM链管理。Laminar完全开源,易于自托管,适合需要构建和管理LLM产品的开发者和团队。
将LLM模型打包成一个可执行文件
llamafile是一个将LLM(大型语言模型)模型及其权重打包成一个自包含可执行文件的工具。它结合了llama.cpp和Cosmopolitan Libc,可以让复杂的LLM模型被压缩成一个llamafile,无需进行任何安装和配置就可以在大多数计算机上本地运行。主要优点是使开源的LLM模型更易于开发者和终端用户访问。
Langroid是一个基于Python的轻量级LLM框架
Langroid是一个轻量级、可扩展和原则性的Python框架,可以轻松地构建基于LLM的应用程序。您可以设置代理,为它们配备可选组件(LLM、向量存储和方法),分配它们任务,并让他们通过交换消息协作解决问题。这个多代理范例的灵感来自Actor框架(但您不需要了解任何关于这个的知识!)。Langroid提供了一个全新的LLM应用程序开发方式,在简化开发人员体验方面进行了深思熟虑;它不使用Langchain。我们欢迎贡献--请参阅贡献文档以获取贡献想法。
开源UI可视化工具,轻松构建定制化的LLM流程
Flowise是一个开源的UI可视化工具,使用LangchainJS编写,用于构建定制化的LLM流程。它支持快速构建LLM应用程序,并提供可扩展的组件集成。Flowise可以用于构建LLM链、问答检索链、语言翻译链等多种应用场景。它是一个免费的开源项目,适用于商业和个人使用。
统一的开放命名实体和语音识别模型
WhisperNER是一个结合了自动语音识别(ASR)和命名实体识别(NER)的统一模型,具备零样本能力。该模型旨在作为ASR带NER的下游任务的强大基础模型,并可以在特定数据集上进行微调以提高性能。WhisperNER的重要性在于其能够同时处理语音识别和实体识别任务,提高了处理效率和准确性,尤其在多语言和跨领域的场景中具有显著优势。
为数据中心打造的高效AI推理平台
d-Matrix是一家专注于AI推理技术的公司,其旗舰产品Corsair™是为数据中心设计的AI推理平台,能够提供极高的推理速度和极低的延迟。d-Matrix通过硬件软件协同设计,优化了Generative AI推理性能,推动了AI技术在数据中心的应用,使得大规模AI推理变得更加高效和可持续。
释放超级推理能力,提升AIME & MATH基准测试性能。
DeepSeek-R1-Lite-Preview是一款专注于提升推理能力的AI模型,它在AIME和MATH基准测试中展现了出色的性能。该模型具备实时透明的思考过程,并且计划推出开源模型和API。DeepSeek-R1-Lite-Preview的推理能力随着思考长度的增加而稳步提升,显示出更好的性能。产品背景信息显示,DeepSeek-R1-Lite-Preview是DeepSeek公司推出的最新产品,旨在通过人工智能技术提升用户的工作效率和问题解决能力。目前,产品提供免费试用,具体的定价和定位信息尚未公布。
下一代Python笔记本
marimo是一个开源的Python反应式笔记本,它具有可复现性、对git友好、可以作为脚本执行,并且可以作为应用程序分享。它通过自动运行受影响的单元格来响应单元格的更改,消除了管理笔记本状态的繁琐工作。marimo的UI元素如数据框架GUI和图表,使得数据处理变得快速、未来感和直观。marimo笔记本以.py文件存储,可以与git版本控制一起使用,可以作为Python脚本运行,也可以导入符号到其他笔记本或Python文件中,并使用你喜欢的工具进行lint或格式化。所有这些都在现代的 AI 支持的编辑器中进行。
Qwen2.5-Coder系列的1.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、代码推理和代码修复而设计。基于强大的Qwen2.5,通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此模型是1.5B参数的指令调优版本,采用GGUF格式,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
开源的GenAI应用网关,快速构建个性化的AI应用
Arch是一个开源的网关,专为处理提示(prompts)而设计,它利用快速的大型语言模型(LLMs)来处理提示,并与后端系统无缝集成。Arch基于Envoy构建,支持任何应用程序语言,并提供快速部署和透明升级。它提供了包括流量管理、前端/边缘网关、监控和端到端追踪在内的多种功能,帮助开发者构建快速、健壮和个性化的GenAI应用。
AI模型部署和推理优化的专家
Neural Magic是一家专注于AI模型优化和部署的公司,提供领先的企业级推理解决方案,以最大化性能和提高硬件效率。公司的产品支持在GPU和CPU基础设施上运行领先的开源大型语言模型(LLMs),帮助企业在云、私有数据中心或边缘环境中安全、高效地部署AI模型。Neural Magic的产品背景信息强调了其在机器学习模型优化方面的专业知识,以及与科研机构合作开发的创新LLM压缩技术,如GPTQ和SparseGPT。产品价格和定位方面,Neural Magic提供了免费试用和付费服务,旨在帮助企业降低成本、提高效率,并保持数据隐私和安全。
免费 npm 库,用 Llama 3.2 Vision 进行 OCR,输出 markdown 文本
开源 npm 库,免费使用 Llama 3.2 Vision 进行 OCR,支持本地和远程图像,计划支持 PDF,受 Zerox 启发,有免费和付费接口
人脸匿名化技术,保留关键细节同时有效保护隐私。
face_anon_simple是一个人脸匿名化技术,旨在通过先进的算法在保护个人隐私的同时保留原始照片中的面部表情、头部姿势、眼神方向和背景元素。这项技术对于需要发布包含人脸的图片但又希望保护个人隐私的场合非常有用,比如在新闻报道、社交媒体和安全监控等领域。产品基于开源代码,允许用户自行部署和使用,具有很高的灵活性和应用价值。
Qwen2.5-Coder系列中的3B参数模型,专注于代码生成与理解。
Qwen2.5-Coder-3B是Qwen2.5-Coder系列中的一个大型语言模型,专注于代码生成、推理和修复。基于强大的Qwen2.5,该模型通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,实现了在代码生成、推理和修复方面的显著改进。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此外,Qwen2.5-Coder-3B还为现实世界的应用提供了更全面的基础,如代码代理,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列中的7B参数代码生成模型
Qwen2.5-Coder-7B是基于Qwen2.5的大型语言模型,专注于代码生成、代码推理和代码修复。它在5.5万亿的训练令牌上进行了扩展,包括源代码、文本代码接地、合成数据等,是目前开源代码语言模型的最新进展。该模型不仅在编程能力上与GPT-4o相匹配,还保持了在数学和一般能力上的优势,并支持长达128K令牌的长上下文。
Qwen2.5-Coder系列中的14B参数代码生成模型
Qwen2.5-Coder-14B-Instruct是Qwen2.5-Coder系列中的一个大型语言模型,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该模型通过扩展训练令牌到5.5万亿,包括源代码、文本代码接地、合成数据等,成为当前开源代码LLM的最新技术。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长达128K令牌的长上下文。
开源代码生成大型语言模型
Qwen2.5-Coder是一系列专为代码生成设计的Qwen大型语言模型,包含0.5、1.5、3、7、14、32亿参数的六种主流模型尺寸,以满足不同开发者的需求。该模型在代码生成、代码推理和代码修复方面有显著提升,基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码基础、合成数据等。Qwen2.5-Coder-32B是目前最先进的开源代码生成大型语言模型,其编码能力与GPT-4o相匹配。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长达128K令牌的长上下文。
专为软件改进设计的开源大型语言模型。
Lingma SWE-GPT是一个开源的大型语言模型,专注于软件工程领域的任务,旨在提供智能化的开发支持。该模型基于Qwen系列基础模型,经过额外训练以增强其在复杂软件工程任务中的能力。它在软件工程智能代理的权威排行榜上表现出色,适合需要自动化软件改进的开发团队和研究人员。
开源AI开发者助手,提升开发效率。
OpenHands是由All Hands AI开发的开源AI软件工程师,旨在帮助开发者处理积压的工作,让他们能够专注于解决难题、创造性挑战和过度工程化他们的配置文件。该产品在SWE-bench验证问题集中解决了超过一半的问题,是首个得分超过50%的AI工程师。此外,来自十几个学术机构的顶级代码生成研究人员每天都在帮助改进它。OpenHands在GitHub上以MIT许可证开源,拥有35k星标和190+贡献者。它与AI安全专家如Invariant Labs合作,以平衡创新与安全。
Sidecar是Aide编辑器的AI大脑,与编辑器协同工作。
Sidecar是为Aide编辑器设计的人工智能插件,它在本地机器上与编辑器一起工作,负责创建提示、与大型语言模型(LLM)通信以及处理它们之间的所有交互。Sidecar的主要优点包括提高编程效率、智能代码补全和集成化的AI辅助开发。它基于Rust语言开发,确保了性能和安全性。Sidecar适用于需要在本地机器上进行高效编程和代码管理的开发者。
人类中心语言模型和模拟器的领导者
Nous Research专注于开发以人为中心的语言模型和模拟器,致力于将AI系统与现实世界用户体验对齐。我们的主要研究领域包括模型架构、数据合成、微调和推理。我们优先开发开源、人类兼容的模型,挑战传统的封闭模型方法。
自托管的网页数据抓取工具
Scraperr是一个自托管的网页数据抓取工具,允许用户通过指定XPath来抓取网页上的元素。用户可以提交URL和相应的元素进行抓取,结果会以表格形式展示,并支持下载为Excel文件。该工具的主要优点包括用户友好的界面、灵活的XPath选择器、批量处理能力以及对AI技术的支持。Scraperr适用于需要从网页上提取大量数据的用户,无论是研究人员、开发者还是市场营销人员。
AI内容审核服务,保护下游部署安全。
Mistral Moderation API是Mistral AI推出的内容审核服务,旨在帮助用户检测和过滤不受欢迎的文本内容。该API是Le Chat中使用的审核服务的同一技术,现在对外开放,以便用户可以根据特定的应用和安全标准定制和使用这一工具。该模型是一个基于LLM(大型语言模型)的分类器,能够将文本输入分类到9个预定义的类别中。Mistral AI的这一API支持原生多语言,特别针对阿拉伯语、中文、英语、法语、德语、意大利语、日语、韩语、葡萄牙语、俄语和西班牙语进行了训练。该API的主要优点包括提高审核的可扩展性和鲁棒性,以及通过技术文档提供的详细政策定义和启动指南,帮助用户有效实施系统级的安全防护。
开源、自托管、AI驱动的应用构建器。
Srcbook是一个开源、自托管的AI驱动应用构建器,它允许用户快速构建和部署各种应用程序。产品背景信息显示,Srcbook旨在提供一个平台,让开发者和非技术用户都能够轻松地构建应用程序,从而提高生产力和创新能力。它支持多种应用场景,如项目管理工具、音乐发现页面、技术文档网站等。Srcbook的主要优点包括开源性、灵活性和易用性,用户可以根据自己的需求定制和扩展功能。
简单易用,释放AI的强大力量
5ire是一个以简洁和用户友好为核心的AI产品,旨在让即使是初学者也能轻松利用大型语言模型。它支持多种文档格式的解析和向量化,具备本地知识库、使用分析、提示库、书签和快速关键词搜索等功能。作为一个开源项目,5ire提供免费下载,并且提供了按需付费的大型语言模型API服务。
开源的网页自动化库,支持任何大型语言模型(LLM)
browser-use是一个开源的网页自动化库,允许大型语言模型(LLM)与网站进行交互,通过简单的接口实现复杂的网页操作。该技术的主要优点包括对多种语言模型的通用支持、交互元素自动检测、多标签页管理、XPath提取、视觉模型支持等。它解决了传统网页自动化中的一些痛点,如动态内容处理、长任务解决等。browser-use以其灵活性和易用性,为开发者提供了一个强大的工具,以构建更加智能和自动化的网页交互体验。
© 2024 AIbase 备案号:闽ICP备08105208号-14