需求人群:
"用于评估和优化 LLM 应用的性能和输出"
使用场景示例:
为聊天机器人编写测试用例,评估其回答的准确性
比较不同 LLM 配置的性能,选择最佳配置
通过分析仪表盘识别 LLM 工作流中的瓶颈
产品特色:
定义预期输出
衡量 LLM 性能
差异跟踪
分析功能
A/B 测试
输出分类
报告仪表盘
数据集生成
详细监控
浏览量:15
最新流量情况
月访问量
71.88k
平均访问时长
00:02:24
每次访问页数
2.30
跳出率
53.37%
流量来源
直接访问
35.87%
自然搜索
51.42%
邮件
0.08%
外链引荐
8.02%
社交媒体
4.12%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
印度
5.32%
韩国
3.45%
俄罗斯
3.62%
美国
33.29%
越南
3.79%
开源评估基础设施,为 LLM 提供信心
Confident AI 是一个开源的评估基础设施,为 LLM(Language Model)提供信心。用户可以通过编写和执行测试用例来评估自己的 LLM 应用,并使用丰富的开源指标来衡量其性能。通过定义预期输出并与实际输出进行比较,用户可以确定 LLM 的表现是否符合预期,并找出改进的方向。Confident AI 还提供了高级的差异跟踪功能,帮助用户优化 LLM 配置。此外,用户还可以利用全面的分析功能,识别重点关注的用例,实现 LLM 的有信心地投产。Confident AI 还提供了强大的功能,帮助用户自信地将 LLM 投入生产,包括 A/B 测试、评估、输出分类、报告仪表盘、数据集生成和详细监控。
开源全栈平台,为打造顶级LLM产品提供支持
Laminar是一个开源的全栈平台,专注于从第一性原理出发进行AI工程。它帮助用户收集、理解和使用数据,以提高大型语言模型(LLM)应用的质量。Laminar支持对文本和图像模型的追踪,并且即将支持音频模型。产品的主要优点包括零开销的可观测性、在线评估、数据集构建和LLM链管理。Laminar完全开源,易于自托管,适合需要构建和管理LLM产品的开发者和团队。
将LLM模型打包成一个可执行文件
llamafile是一个将LLM(大型语言模型)模型及其权重打包成一个自包含可执行文件的工具。它结合了llama.cpp和Cosmopolitan Libc,可以让复杂的LLM模型被压缩成一个llamafile,无需进行任何安装和配置就可以在大多数计算机上本地运行。主要优点是使开源的LLM模型更易于开发者和终端用户访问。
Langroid是一个基于Python的轻量级LLM框架
Langroid是一个轻量级、可扩展和原则性的Python框架,可以轻松地构建基于LLM的应用程序。您可以设置代理,为它们配备可选组件(LLM、向量存储和方法),分配它们任务,并让他们通过交换消息协作解决问题。这个多代理范例的灵感来自Actor框架(但您不需要了解任何关于这个的知识!)。Langroid提供了一个全新的LLM应用程序开发方式,在简化开发人员体验方面进行了深思熟虑;它不使用Langchain。我们欢迎贡献--请参阅贡献文档以获取贡献想法。
开源UI可视化工具,轻松构建定制化的LLM流程
Flowise是一个开源的UI可视化工具,使用LangchainJS编写,用于构建定制化的LLM流程。它支持快速构建LLM应用程序,并提供可扩展的组件集成。Flowise可以用于构建LLM链、问答检索链、语言翻译链等多种应用场景。它是一个免费的开源项目,适用于商业和个人使用。
创建互动式动态图形的新方式
Rive是一种新型的图形构建方式,它通过丰富的交互性和状态驱动的动画,消除了硬编码图形的需求,使团队能够更快迭代并构建更好的产品。Rive提供了一个全新的图形格式,适用于互动时代,可以用于游戏、应用、网站等多个领域。
高精度将图片或PDF转换为Markdown文本或JSON结构化文档的API
pdf-extract-api是一个使用现代OCR技术和Ollama支持的模型将任何文档或图片转换为结构化的JSON或Markdown文本的API。它使用FastAPI构建,并使用Celery进行异步任务处理,Redis用于缓存OCR结果。该API无需云或外部依赖,所有处理都在本地开发或服务器环境中完成,确保数据安全。它支持PDF到Markdown的高精度转换,包括表格数据、数字或数学公式,并且可以使用Ollama支持的模型进行PDF到JSON的转换。此外,该API还支持LLM改进OCR结果,去除PDF中的个人身份信息(PII),以及分布式队列处理和缓存。
业界领先的开源大型混合专家模型
Tencent-Hunyuan-Large(混元大模型)是由腾讯推出的业界领先的开源大型混合专家(MoE)模型,拥有3890亿总参数和520亿激活参数。该模型在自然语言处理、计算机视觉和科学任务等领域取得了显著进展,特别是在处理长上下文输入和提升长上下文任务处理能力方面表现出色。混元大模型的开源,旨在激发更多研究者的创新灵感,共同推动AI技术的进步和应用。
视频编辑工具,使用Genmo Mochi技术
ComfyUI-MochiEdit是一个基于Genmo Mochi技术的视频编辑插件,允许用户通过ComfyUI界面对视频进行编辑。该插件的主要优点在于其能够利用先进的视频处理技术,提供给用户一个直观、易用的编辑环境。产品背景信息显示,它是由logtd和kijai共同开发,并且遵循GPL-3.0开源许可证。由于其开源特性,该插件可以免费使用,定位于需要视频编辑功能的专业用户或爱好者。
开源机器人模拟平台,用于生成无限机器人数据和泛化AI。
ManiSkill是一个领先的开源平台,专注于机器人模拟、无限机器人数据生成和泛化机器人AI。由HillBot.ai领导,该平台支持通过状态和/或视觉输入快速训练机器人,与其它平台相比,ManiSkill/SAPIEN实现了10-100倍的视觉数据收集速度。它支持在GPU上并行模拟和渲染RGB-D,速度高达30,000+FPS。ManiSkill提供了40多种技能/任务和2000多个对象的预构建任务,拥有数百万帧的演示和密集的奖励函数,用户无需自己收集资产或设计任务,可以专注于算法开发。此外,它还支持在每个并行环境中同时模拟不同的对象和关节,训练泛化机器人策略/AI的时间从天缩短到分钟。ManiSkill易于使用,可以通过pip安装,并提供简单灵活的GUI以及所有功能的广泛文档。
国内领先的LLM一站式企业解决方案
Chat Nio是一个国内领先的LLM(Large Language Model)一站式企业解决方案,提供强大的AI集成工具,支持35+主流AI模型,涵盖文本生成、图像创作、音频处理和视频编辑等领域,并支持私有化部署和中转服务。它为开发者、个人用户和企业提供定制化的AI解决方案,包括但不限于多租户令牌分发、计费管理系统、深度集成Midjourney Proxy Plus绘画功能、全方位调用日志记录系统等。Chat Nio以其多功能性、灵活性和易用性,满足企业和团队的多样化需求,帮助他们高效开发和部署AI应用。
Android平台上的私有、设备端语音识别键盘和文字服务
Transcribro是一款运行在Android平台上的私有、设备端语音识别键盘和文字服务应用,它使用whisper.cpp来运行OpenAI Whisper系列模型,并结合Silero VAD进行语音活动检测。该应用提供了语音输入键盘,允许用户通过语音进行文字输入,并且可以被其他应用显式使用,或者设置为用户选择的语音转文字应用,部分应用可能会使用它来进行语音转文字。Transcribro的背景是为用户提供一种更安全、更私密的语音转文字解决方案,避免了云端处理可能带来的隐私泄露问题。该应用是开源的,用户可以自由地查看、修改和分发代码。
开源人工智能定义,推动AI领域的开放与合作
Open Source AI Definition(OSAID)是由Open Source Initiative(OSI)发布的行业首个开源人工智能定义。它提供了一个标准,通过社区领导的开放和公共评估来验证一个AI系统是否可以被认为是开源AI。OSAID v1.0的发布是多年研究和合作的结果,经过国际研讨会和为期一年的共同设计过程。这个定义要求开源模型提供足够的训练数据信息,以便熟练的人可以使用相同或类似的数据重建一个大致等效的系统。OSAID的发布对于推动AI领域的开放性、透明度和合作具有重要意义,它强调了开源原则在AI发展中的核心地位,并为独立机器学习研究人员和大型AI开发者之间的透明度提供了支持。
A tool for integrating private data with AI large language models.
Dabarqus是一个Retrieval Augmented Generation(RAG)框架,它允许用户将私有数据实时提供给大型语言模型(LLM)。这个工具通过提供REST API、SDKs和CLI工具,使得用户能够轻松地将各种数据源(如PDF、电子邮件和原始数据)存储到语义索引中,称为“记忆库”。Dabarqus支持LLM风格的提示,使用户能够以简单的方式与记忆库进行交互,而无需构建特殊的查询或学习新的查询语言。此外,Dabarqus还支持多语义索引(记忆库)的创建和使用,使得数据可以根据主题、类别或其他分组方式进行组织。Dabarqus的产品背景信息显示,它旨在简化私有数据与AI语言模型的集成过程,提高数据检索的效率和准确性。
将项目文件夹中的所有代码合并为单个文本文件。
Code Spoonfeeder是一个在线工具,它允许用户将一个项目文件夹中的所有代码文件合并成一个单一的文本文件,方便代码的查看和管理。这个工具对于需要快速浏览整个项目代码或者进行代码备份的用户来说非常有用。它强调了处理的安全性和隐私性,承诺在处理完毕后立即删除所有文件。产品背景信息显示,这是一个开源项目,用户可以在GitHub上查看和贡献代码。
开源AI网关和开发者门户,轻松管理、集成和部署AI服务。
APIPark是一个开源的AI网关和API开发者门户,由Eolink推出,旨在帮助开发者和企业轻松管理、集成和部署AI服务。Eolink提供API全生命周期治理解决方案,服务全球超过100,000家企业,并积极投资开源生态系统,为全球数千万专业开发者提供服务。APIPark以其高性能、低成本、易于部署和使用的特点,满足企业在AI服务管理方面的需求,提升效率,保障安全,并优化数据价值。
超轻量级数字人模型,移动端实时运行
Ultralight-Digital-Human是一个超轻量级的数字人模型,可以在移动端实时运行。这个模型是开源的,据开发者所知,它是第一个如此轻量级的开源数字人模型。该模型的主要优点包括轻量级设计,适合移动端部署,以及实时运行的能力。它的背后是深度学习技术,特别是在人脸合成和声音模拟方面的应用,这使得数字人模型能够以较低的资源消耗实现高质量的表现。产品目前是免费的,主要面向技术爱好者和开发者。
将自然语言描述转化为可执行的shell命令的本地推理命令行工具。
llmc是一个基于llama.cpp的本地推理命令行工具,能够将自然语言描述转化为可执行的shell命令。它支持多种预配置的模型,并允许用户自定义模型以适应特定的工作流程。该工具的主要优点包括自然语言命令生成、可定制化模型、多种操作模式、命令解释以及追踪功能。llmc的背景信息显示,它是由guoriyue开发的一个开源项目,拥有活跃的社区和持续的更新。产品定位为免费开源工具,旨在提高开发者和技术人员的工作效率。
模块化仿人机器人,用于强化学习训练
Agibot X1是由Agibot开发的模块化仿人机器人,具有高自由度,基于Agibot开源框架AimRT作为中间件,并使用强化学习进行运动控制。该项目是Agibot X1使用的强化学习训练代码,可以与Agibot X1提供的推理软件结合用于真实机器人和模拟步行调试,或导入其他机器人模型进行训练。
模块化仿人机器人,具有高自由度
Agibot X1是由Agibot开发的模块化仿人机器人,具有高自由度,基于Agibot开源框架AimRT作为中间件,并使用强化学习进行运动控制。该项目包括模型推理、平台驱动和软件仿真等多个功能模块。AimRT框架是一个用于机器人应用开发的开源框架,它提供了一套完整的工具和库,以支持机器人的感知、决策和行动。Agibot X1项目的重要性在于它为机器人研究和教育提供了一个高度可定制和可扩展的平台。
全栈开源机器人
智元灵犀X1是一款开源人形机器人,具有29个关节和2个夹爪,支持扩展头部3自由度。它提供了详细的开发指南和开源代码,使开发者能够快速搭建并进行二次开发。该产品代表了智能机器人领域的先进技术,具有高度的灵活性和可扩展性,适用于教育、研究和商业开发等多种场景。
Mochi视频生成器的ComfyUI包装节点
ComfyUI-MochiWrapper是一个用于Mochi视频生成器的包装节点,它允许用户通过ComfyUI界面与Mochi模型进行交互。这个项目主要优点是能够利用Mochi模型生成视频内容,并且通过ComfyUI简化了操作流程。它是基于Python开发的,并且完全开源,允许开发者自由地使用和修改。目前该项目还处于积极开发中,已经有一些基本功能,但还没有正式发布版本。
将GitHub链接转换为适合LLM的格式
GitHub to LLM Converter是一个在线工具,旨在帮助用户将GitHub上的项目、文件或文件夹链接转换成适合大型语言模型(LLM)处理的格式。这一工具对于需要处理大量代码或文档数据的开发者和研究人员来说至关重要,因为它简化了数据准备过程,使得这些数据可以被更高效地用于机器学习或自然语言处理任务。该工具由Skirano开发,提供了一个简洁的用户界面,用户只需输入GitHub链接,即可一键转换,极大地提高了工作效率。
Genmo 的视频生成模型,具有高保真运动和强提示遵循性。
这是一个先进的视频生成模型,采用 AsymmDiT 架构,可免费试用。它能生成高保真视频,缩小了开源与闭源视频生成系统的差距。模型需要至少 4 个 H100 GPU 运行。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
© 2024 AIbase 备案号:闽ICP备08105208号-14