需求人群:
"该产品主要面向研究人员和开发者,尤其是那些需要提升LLMs在特定任务中表现的用户。它适合那些需要通过外部信息增强模型能力的场景,例如问答系统、文本生成等。"
使用场景示例:
使用RAG-FiT对PubMedQA数据集进行微调,提升模型在医学问答任务中的表现。
通过RAG-FiT增强的模型在新闻摘要生成任务中提高信息准确性和相关性。
利用RAG-FiT对法律文本进行微调,帮助模型更好地理解和生成法律相关的内容。
产品特色:
支持数据增强:创建RAG增强数据集,包括数据加载、归一化、聚合和检索。
高效训练:使用参数高效微调(PEFT)技术对模型进行训练。
灵活推理:支持使用训练或未训练的LLMs进行预测。
多样化评估:提供多种RAG特定的评估指标,如EM、F1、ROUGE等。
模块化设计:通过配置文件实现工作流的定制化。
支持多种模型:兼容Hugging Face Transformers、OpenAI等模型。
可扩展性:允许用户实现自定义评估指标和数据处理步骤。
使用教程:
1. 克隆RAG-FiT仓库并安装依赖:运行`pip install -e .`。
2. 创建RAG增强数据集:使用`processing.py`脚本,配置数据加载、检索和预处理步骤。
3. 训练模型:使用`training.py`脚本,选择合适的PEFT技术对模型进行训练。
4. 进行推理:使用`inference.py`脚本,生成模型的预测结果。
5. 评估模型:使用`evaluation.py`脚本,选择评估指标对模型性能进行评估。
6. 自定义配置:通过Hydra工具修改配置文件,调整工作流和参数设置。
7. 部署模型:将训练好的模型部署到Hugging Face Hub或其他平台。
浏览量:5
最新流量情况
月访问量
7842
平均访问时长
00:01:07
每次访问页数
1.34
跳出率
48.98%
流量来源
直接访问
40.30%
自然搜索
39.57%
邮件
0.07%
外链引荐
13.09%
社交媒体
6.35%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
德国
8.28%
韩国
10.76%
美国
54.58%
越南
7.63%
RAG-FiT是一个用于提升LLMs利用外部信息能力的库,通过特别创建的RAG增强数据集对模型进行微调。
RAG-FiT是一个强大的工具,旨在通过检索增强生成(RAG)技术提升大型语言模型(LLMs)的能力。它通过创建专门的RAG增强数据集,帮助模型更好地利用外部信息。该库支持从数据准备到模型训练、推理和评估的全流程操作。其主要优点包括模块化设计、可定制化工作流以及对多种RAG配置的支持。RAG-FiT基于开源许可,适合研究人员和开发者进行快速原型开发和实验。
Tülu 3 405B 是一个大规模开源语言模型,通过强化学习提升性能。
Tülu 3 405B 是由 Allen Institute for AI 开发的开源语言模型,具有 4050 亿参数。该模型通过创新的强化学习框架(RLVR)提升性能,尤其在数学和指令跟随任务中表现出色。它基于 Llama-405B 模型进行优化,采用监督微调、偏好优化等技术。Tülu 3 405B 的开源性质使其成为研究和开发领域的强大工具,适用于需要高性能语言模型的各种应用场景。
首个面向语境智能的人类级实时交互系统,支持多情感、多风格语音交互。
SpeechGPT 2.0-preview 是一款由复旦大学自然语言处理实验室开发的先进语音交互模型。它通过海量语音数据训练,实现了低延迟、高自然度的语音交互能力。该模型能够模拟多种情感、风格和角色的语音表达,同时支持工具调用、在线搜索和外部知识库访问等功能。其主要优点包括强大的语音风格泛化能力、多角色模拟以及低延迟交互体验。目前该模型仅支持中文语音交互,未来计划扩展到更多语言。
百川智能开发的专为医疗场景优化的开源大语言模型,具备卓越的通用能力和医疗领域性能。
Baichuan-M1-14B 是由百川智能开发的开源大语言模型,专为医疗场景优化。它基于20万亿token的高质量医疗与通用数据训练,覆盖20多个医疗科室,具备强大的上下文理解和长序列任务表现能力。该模型在医疗领域表现出色,同时在通用任务中也达到了同尺寸模型的效果。其创新的模型结构和训练方法使其在医疗推理、病症判断等复杂任务中表现出色,为医疗领域的人工智能应用提供了强大的支持。
科学文献综合检索增强型语言模型
Ai2 OpenScholar是由艾伦人工智能研究所与华盛顿大学合作开发的检索增强型语言模型,旨在帮助科学家通过检索相关文献并基于这些文献生成回答来有效导航和综合科学文献。该模型在多个科学领域中表现出色,特别是在引用准确性和事实性方面。它代表了人工智能在科学研究中应用的重要进步,能够加速科学发现并提高研究效率。
先进的指令遵循模型,提供开源数据和代码。
Llama-3.1-Tulu-3-8B是Tülu3指令遵循模型家族的一部分,专为多样化任务设计,包括聊天、数学问题解答、GSM8K和IFEval等。这个模型家族以其卓越的性能和完全开源的数据、代码以及现代后训练技术的全面指南而著称。模型主要使用英文,并且是基于allenai/Llama-3.1-Tulu-3-8B-DPO模型微调而来。
业界领先的开源大型混合专家模型
Tencent-Hunyuan-Large(混元大模型)是由腾讯推出的业界领先的开源大型混合专家(MoE)模型,拥有3890亿总参数和520亿激活参数。该模型在自然语言处理、计算机视觉和科学任务等领域取得了显著进展,特别是在处理长上下文输入和提升长上下文任务处理能力方面表现出色。混元大模型的开源,旨在激发更多研究者的创新灵感,共同推动AI技术的进步和应用。
一个用于与ChatGPT模型交互的提示集合
Awesome ChatGPT Prompts是一个开源仓库,收集了用于与ChatGPT模型交互的提示示例。这个仓库鼓励用户添加自己的提示,并使用ChatGPT生成新的提示。
RWKV v6 Finch 14B,开源大模型,高效处理长文本。
RWKV v6 Finch 14B是RWKV架构的第六个版本,也是该系列中最大的模型。它通过引入数据依赖性到token shift和time-mixing中,提高了处理长文本时的效率。Finch 14B模型在处理提示时,能够更好地管理其长期记忆,从而提供更广泛的应用范围。该模型是开源的,由Linux Foundation认可,并且接受社区的GPU集群时间捐赠以支持训练。
一个完全开源的大型语言模型,提供先进的自然语言处理能力。
MAP-NEO是一个完全开源的大型语言模型,它包括预训练数据、数据处理管道(Matrix)、预训练脚本和对齐代码。该模型从零开始训练,使用了4.5T的英文和中文token,展现出与LLaMA2 7B相当的性能。MAP-NEO在推理、数学和编码等具有挑战性的任务中表现出色,超越了同等规模的模型。为了研究目的,我们致力于实现LLM训练过程的完全透明度,因此我们全面发布了MAP-NEO,包括最终和中间检查点、自训练的分词器、预训练语料库以及高效稳定的优化预训练代码库。
结合文本提取、网络分析和大型语言模型提示与总结的端到端系统
GraphRAG (Graphs + Retrieval Augmented Generation) 是一种通过结合文本提取、网络分析以及大型语言模型(LLM)的提示和总结,来丰富理解文本数据集的技术。该技术即将在GitHub上开源,是微软研究项目的一部分,旨在通过先进的算法提升文本数据的处理和分析能力。
Qwen1.5系列首个千亿参数开源模型,多语言支持,高效Transformer解码器架构。
Qwen1.5-110B是Qwen1.5系列中规模最大的模型,拥有1100亿参数,支持多语言,采用高效的Transformer解码器架构,并包含分组查询注意力(GQA),在模型推理时更加高效。它在基础能力评估中与Meta-Llama3-70B相媲美,在Chat评估中表现出色,包括MT-Bench和AlpacaEval 2.0。该模型的发布展示了在模型规模扩展方面的巨大潜力,并且预示着未来通过扩展数据和模型规模,可以获得更大的性能提升。
高效的企业级人工智能模型,低成本实现高质量定制模型。
Snowflake Arctic 是一款专为企业级人工智能任务设计的大规模语言模型(LLM),它在 SQL 生成、编码以及指令遵循等基准测试中表现出色,即使与计算预算更高的开源模型相比也毫不逊色。Arctic 通过其高效的训练和推理,为 Snowflake 客户以及广大 AI 社区提供了一种成本效益极高的定制模型创建方式。此外,Arctic 采用 Apache 2.0 许可,提供无门槛的权重和代码访问,并通过开源数据配方和研究洞察,进一步推动了社区的开放性和成本效益。
先进的开源多模态模型
Yi-VL-34B是 Yi Visual Language(Yi-VL)模型的开源版本,是一种多模态模型,能够理解和识别图像,并进行关于图像的多轮对话。Yi-VL 在最新的基准测试中表现出色,在 MMM 和 CMMMU 两个基准测试中均排名第一。
s1是一个基于Qwen2.5-32B-Instruct微调的推理模型,仅用1000个样本进行训练。
s1是一个推理模型,专注于通过少量样本实现高效的文本生成能力。它通过预算强制技术在测试时进行扩展,能够匹配o1-preview的性能。该模型由Niklas Muennighoff等人开发,相关研究发表在arXiv上。模型使用Safetensors技术,具有328亿参数,支持文本生成任务。其主要优点是能够通过少量样本实现高质量的推理,适合需要高效文本生成的场景。
Qwen2.5-Max是一个大规模的Mixture-of-Expert (MoE)模型,致力于提升模型智能。
Qwen2.5-Max是一个大规模的Mixture-of-Expert (MoE)模型,经过超过20万亿tokens的预训练和监督微调与人类反馈强化学习的后训练。它在多个基准测试中表现优异,展示了强大的知识和编码能力。该模型通过阿里巴巴云提供API接口,支持开发者在各种应用场景中使用。其主要优点包括强大的性能、灵活的部署方式和高效的训练技术,旨在为人工智能领域提供更智能的解决方案。
DeepSeek是一个智能聊天助手,提供高效的人工智能对话服务。
DeepSeek是一个基于人工智能技术的智能聊天助手,旨在通过自然语言处理技术为用户提供高效、智能的对话体验。它能够理解用户的问题并提供准确的回答,适用于多种场景,包括日常对话、信息查询和问题解答。DeepSeek的核心优势在于其强大的语言理解和生成能力,能够为用户提供流畅的交互体验。该产品目前以网站形式提供服务,适合需要快速获取信息和进行智能对话的用户。
本地运行的人工智能代理,无缝自动化工程任务。
Codename Goose 是一款本地运行的人工智能代理工具,旨在帮助开发者高效完成工程任务。它强调开源和本地运行,确保用户对任务执行有完全控制权。通过连接外部服务器或API,Goose 可以根据用户需求进行扩展,实现复杂任务的自动化处理,从而让开发者专注于更重要的工作。Goose 的开源特性鼓励开发者参与贡献和创新,其本地运行的模式保障了数据隐私和任务执行效率。
Xwen-Chat是专注中文对话的大语言模型集合,提供多版本模型及语言生成服务
Xwen-Chat由xwen-team开发,为满足高质量中文对话模型需求而生,填补领域空白。其有多个版本,具备强大语言理解与生成能力,可处理复杂语言任务,生成自然对话内容,适用于智能客服等场景,在Hugging Face平台免费提供。
开源的深度研究工具,旨在通过开源框架复现类似Deep Research的功能
Open-source DeepResearch 是一个开源项目,旨在通过开源的框架和工具复现类似 OpenAI Deep Research 的功能。该项目基于 Hugging Face 平台,利用开源的大型语言模型(LLM)和代理框架,通过代码代理和工具调用实现复杂的多步推理和信息检索。其主要优点是开源、可定制性强,并且能够利用社区的力量不断改进。该项目的目标是让每个人都能在本地运行类似 DeepResearch 的智能代理,使用自己喜爱的模型,并且完全本地化和定制化。
持续搜索和阅读网页,直到找到答案(或超出token预算)。
node-DeepResearch 是一个基于 Jina AI 技术的深度研究模型,专注于通过持续搜索和阅读网页来寻找问题的答案。它利用 Gemini 提供的 LLM 能力和 Jina Reader 的网页搜索功能,能够处理复杂的查询任务,并通过多步骤的推理和信息整合来生成答案。该模型的主要优点在于其强大的信息检索能力和推理能力,能够处理复杂的、需要多步骤解答的问题。它适用于需要深入研究和信息挖掘的场景,如学术研究、市场分析等。目前该模型是开源的,用户可以通过 GitHub 获取代码并自行部署使用。
这是一个完全开放的 DeepSeek-R1 模型的复现项目,旨在帮助开发者复现和构建基于 R1 的模型。
huggingface/open-r1 是一个开源项目,致力于复现 DeepSeek-R1 模型。该项目提供了一系列脚本和工具,用于训练、评估和生成合成数据,支持多种训练方法和硬件配置。其主要优点是完全开放,允许开发者自由使用和改进,对于希望在深度学习和自然语言处理领域进行研究和开发的用户来说,是一个非常有价值的资源。该项目目前没有明确的定价,适合学术研究和商业用途。
Janus-Pro-1B 是一个统一多模态理解和生成的自回归框架。
Janus-Pro-1B 是一个创新的多模态模型,专注于统一多模态理解和生成。它通过分离视觉编码路径,解决了传统方法在理解和生成任务中的冲突问题,同时保持了单个统一的 Transformer 架构。这种设计不仅提高了模型的灵活性,还使其在多模态任务中表现出色,甚至超越了特定任务的模型。该模型基于 DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base 构建,使用 SigLIP-L 作为视觉编码器,支持 384x384 的图像输入,并采用特定的图像生成 tokenizer。其开源性和灵活性使其成为下一代多模态模型的有力候选。
Tarsier 是由字节跳动推出的用于生成高质量视频描述的大型视频语言模型。
Tarsier 是由字节跳动研究团队开发的一系列大规模视频语言模型,旨在生成高质量的视频描述,并具备强大的视频理解能力。该模型通过两阶段训练策略(多任务预训练和多粒度指令微调)显著提升了视频描述的精度和细节。其主要优点包括高精度的视频描述能力、对复杂视频内容的理解能力以及在多个视频理解基准测试中取得的 SOTA(State-of-the-Art)结果。Tarsier 的背景基于对现有视频语言模型在描述细节和准确性上的不足进行改进,通过大规模高质量数据训练和创新的训练方法,使其在视频描述领域达到了新的高度。该模型目前未明确定价,主要面向学术研究和商业应用,适合需要高质量视频内容理解和生成的场景。
一种新颖的图像到视频采样技术,基于Hunyuan模型实现高质量视频生成。
leapfusion-hunyuan-image2video 是一种基于 Hunyuan 模型的图像到视频生成技术。它通过先进的深度学习算法,将静态图像转换为动态视频,为内容创作者提供了一种全新的创作方式。该技术的主要优点包括高效的内容生成、灵活的定制化能力以及对高质量视频输出的支持。它适用于需要快速生成视频内容的场景,如广告制作、视频特效等领域。该模型目前以开源形式发布,供开发者和研究人员免费使用,未来有望通过社区贡献进一步提升其性能。
FilmAgent是一个基于LLM的多智能体协作框架,用于虚拟3D空间中的端到端电影自动化制作。
FilmAgent是一种创新的电影制作技术,通过模拟导演、编剧、演员和摄影师等关键角色,利用多智能体协作实现虚拟3D空间中的电影自动化制作。该技术的主要优点在于能够减少人工干预,提高制作效率,同时降低错误率。FilmAgent在电影制作领域的应用,为创作者提供了一个高效、低成本的解决方案,尤其适合资源有限的小型制作团队。虽然目前没有明确的价格信息,但其开源的特性使其具有广泛的适用性和推广价值。
UPDF AI 助力用户对 PDF 文档进行总结、翻译、解释、重写、构思,提升阅读效率。
UPDF AI 是一款基于人工智能技术的 PDF 智能处理工具。它通过与 PDF 文档的交互,帮助用户快速提取和分析文档中的关键信息,从而提高阅读和学习效率。该产品利用先进的自然语言处理技术,能够精准地对文档内容进行总结、翻译、解释等操作。其主要优点包括高效的信息提取能力、精准的语言处理能力以及便捷的用户交互体验。UPDF AI 面向需要处理大量 PDF 文档的用户,无论是学生、研究人员还是专业人士,都能从中受益。目前,该产品的具体价格和定位尚未明确,但其强大的功能和高效的表现使其在市场上具有较高的竞争力。
DeepSeek-R1-Distill-Qwen-1.5B 是一款高效推理的开源语言模型,适用于多种自然语言处理任务。
DeepSeek-R1-Distill-Qwen-1.5B 是由 DeepSeek 团队开发的开源语言模型,基于 Qwen2.5 系列进行蒸馏优化。该模型通过大规模强化学习和数据蒸馏技术,显著提升了推理能力和性能,同时保持了较小的模型体积。它在多项基准测试中表现出色,尤其在数学、代码生成和推理任务中具有显著优势。该模型支持商业使用,并允许用户进行修改和衍生作品开发,适合研究机构和企业用于开发高性能的自然语言处理应用。
© 2025 AIbase 备案号:闽ICP备08105208号-14