需求人群:
"ReFT的目标受众是自然语言处理领域的研究人员和开发者,特别是那些对深度学习和强化学习技术在语言模型上的应用感兴趣的专业人士。该产品适合他们,因为它提供了一个框架来微调和改进大型语言模型,以适应特定的NLP任务,同时提供了丰富的实验数据和代码支持。"
使用场景示例:
研究人员使用ReFT在GSM8k数据集上微调Codellama模型,提高了模型的Top-1准确率。
开发者利用ReFT框架在mathqa数据集上对Galactica模型进行微调,提升了模型的Voting@100性能。
研究团队通过ReFT在svamp数据集上对模型进行ReFT和ReFT-Rerank微调,显著提高了模型的Rerank@100性能。
产品特色:
支持SFT(Supervised Fine-Tuning):通过监督学习对模型进行微调。
支持ReFT(Reinforced Fine-Tuning):使用强化学习技术对模型进行微调。
支持Online-SL和Offline-SL:在线和离线自助学习。
提供多种预训练模型的checkpoints:方便用户从不同阶段开始微调。
支持Top-1和Voting@100评估:提供模型性能的多种评估方式。
支持Reranking:通过重新排序技术进一步提升模型性能。
详细的实验指导和脚本:方便用户快速开始实验和微调。
使用教程:
1. 访问ReFT的GitHub页面并克隆代码到本地。
2. 根据README.md文件中的指南安装所有依赖。
3. 选择合适的预训练模型和checkpoints开始微调。
4. 根据具体的实验需求,运行对应的shell脚本进行模型训练或评估。
5. 参照exps文件夹中的实验设置,调整参数以适应不同的数据集和任务。
6. 使用提供的脚本进行模型性能的评估,包括Top-1、Voting@100和Rerank@100。
7. 如果需要,可以进一步微调模型参数或结构,以获得更好的性能。
浏览量:12
最新流量情况
月访问量
4.95m
平均访问时长
00:06:29
每次访问页数
5.68
跳出率
37.69%
流量来源
直接访问
51.66%
自然搜索
33.21%
邮件
0.04%
外链引荐
12.84%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.79%
德国
3.71%
印度
9.03%
俄罗斯
4.40%
美国
18.49%
基于深度强化学习的模型微调框架
ReFT是一个开源的研究项目,旨在通过深度强化学习技术对大型语言模型进行微调,以提高其在特定任务上的表现。该项目提供了详细的代码和数据,以便研究人员和开发者能够复现论文中的结果。ReFT的主要优点包括能够利用强化学习自动调整模型参数,以及通过微调提高模型在特定任务上的性能。产品背景信息显示,ReFT基于Codellama和Galactica模型,遵循Apache2.0许可证。
视觉语言模型增强工具,结合生成式视觉编码器和深度广度融合技术。
Florence-VL是一个视觉语言模型,通过引入生成式视觉编码器和深度广度融合技术,增强了模型对视觉和语言信息的处理能力。该技术的重要性在于其能够提升机器对图像和文本的理解,进而在多模态任务中取得更好的效果。Florence-VL基于LLaVA项目进行开发,提供了预训练和微调的代码、模型检查点和演示。
PaliGemma 2是功能强大的视觉语言模型,简单易调优。
PaliGemma 2是Gemma家族中的第二代视觉语言模型,它在性能上进行了扩展,增加了视觉能力,使得模型能够看到、理解和与视觉输入交互,开启了新的可能性。PaliGemma 2基于高性能的Gemma 2模型构建,提供了多种模型尺寸(3B、10B、28B参数)和分辨率(224px、448px、896px)以优化任何任务的性能。此外,PaliGemma 2在化学公式识别、乐谱识别、空间推理和胸部X光报告生成等方面展现出领先的性能。PaliGemma 2旨在为现有PaliGemma用户提供便捷的升级路径,作为即插即用的替代品,大多数任务无需大幅修改代码即可获得性能提升。
3D网格生成与语言模型的统一
LLaMA-Mesh是一项将大型语言模型(LLMs)预训练在文本上扩展到生成3D网格的能力的技术。这项技术利用了LLMs中已经嵌入的空间知识,并实现了对话式3D生成和网格理解。LLaMA-Mesh的主要优势在于它能够将3D网格的顶点坐标和面定义表示为纯文本,允许与LLMs直接集成而无需扩展词汇表。该技术的主要优点包括能够从文本提示生成3D网格、按需产生交错的文本和3D网格输出,以及理解和解释3D网格。LLaMA-Mesh在保持强大的文本生成性能的同时,实现了与从头开始训练的模型相当的网格生成质量。
基于MaskGCT模型的文本到语音演示
MaskGCT TTS Demo 是一个基于MaskGCT模型的文本到语音(TTS)演示,由Hugging Face平台上的amphion提供。该模型利用深度学习技术,将文本转换为自然流畅的语音,适用于多种语言和场景。MaskGCT模型因其高效的语音合成能力和对多种语言的支持而受到关注。它不仅可以提高语音识别和合成的准确性,还能在不同的应用场景中提供个性化的语音服务。目前,该产品在Hugging Face平台上提供免费试用,具体价格和定位信息需进一步了解。
OCR-free 文档理解的统一结构学习模型
mPLUG-DocOwl 1.5 是一个致力于OCR-free文档理解的统一结构学习模型,它通过深度学习技术实现了对文档的直接理解,无需传统的光学字符识别(OCR)过程。该模型能够处理包括文档、网页、表格和图表在内的多种类型的图像,支持结构感知的文档解析、多粒度的文本识别和定位,以及问答等功能。mPLUG-DocOwl 1.5 的研发背景是基于对文档理解自动化和智能化的需求,旨在提高文档处理的效率和准确性。该模型的开源特性也促进了学术界和工业界的进一步研究和应用。
基于深度学习的高质量文本到语音合成模型
F5-TTS是由SWivid团队开发的一个文本到语音合成(TTS)模型,它利用深度学习技术将文本转换为自然流畅、忠实于原文的语音输出。该模型在生成语音时,不仅追求高自然度,还注重语音的清晰度和准确性,适用于需要高质量语音合成的各种应用场景,如语音助手、有声读物制作、自动新闻播报等。F5-TTS模型在Hugging Face平台上发布,用户可以方便地下载和部署,支持多种语言和声音类型,具有很高的灵活性和可扩展性。
使用Llama模型的语音合成工具
Llama 3.2 3b Voice 是基于Hugging Face平台的一款语音合成模型,能够将文本转换为自然流畅的语音。该模型采用了先进的深度学习技术,能够模仿人类说话的语调、节奏和情感,适用于多种场景,如语音助手、有声读物、自动播报等。
图像条件扩散模型的微调工具
diffusion-e2e-ft是一个开源的图像条件扩散模型微调工具,它通过微调预训练的扩散模型来提高特定任务的性能。该工具支持多种模型和任务,如深度估计和法线估计,并提供了详细的使用说明和模型检查点。它在图像处理和计算机视觉领域具有重要应用,能够显著提升模型在特定任务上的准确性和效率。
谷歌旗下领先的人工智能研究公司
Google DeepMind 是谷歌旗下的一家领先的人工智能公司,专注于开发先进的机器学习算法和系统。DeepMind 以其在深度学习和强化学习领域的开创性工作而闻名,其研究涵盖了从游戏到医疗保健等多个领域。DeepMind 的目标是通过构建智能系统来解决复杂的问题,推动科学和医学的进步。
AI工具目录,发现最佳AI工具
Aixploria是一个专注于人工智能的网站,提供在线AI工具目录,帮助用户发现和选择满足其需求的最佳AI工具。该平台以简化的设计和直观的搜索引擎,让用户能够轻松地通过关键词搜索,找到各种AI应用。Aixploria不仅提供工具列表,还发布关于每个AI如何工作的文章,帮助用户理解最新趋势和最受欢迎的应用。此外,Aixploria还设有实时更新的'top 10 AI'专区,方便用户快速了解每个类别中的顶级AI工具。Aixploria适合所有对AI感兴趣的人,无论是初学者还是专家,都能在这里找到有价值的信息。
新一代大模型架构,超越 Transformer。
RWKV 是一种革新的深度学习架构,结合了 RNN 和 Transformer 的最佳特性。它提供出色的性能,快速的推理和训练,并且不依赖自注意力机制,节省 VRAM,支持 ' 无限 ' 的上下文长度。RWKV 在多个语言和编码中表现出色,成为全球开发者的热门选择,推动了开源大语言模型的进步。
从零开始实现Llama3模型
这是一个开源项目,作者naklecha从零开始实现了Llama3模型,这是一个大型语言模型。项目提供了详细的代码实现,包括模型的各个组成部分,如注意力机制、前馈网络等。通过这个项目,开发者可以深入理解大型语言模型的工作原理,同时也可以在此基础上进行自己的实验和改进。
开源的基于深度文档理解的RAG(检索增强生成)引擎
RAGFlow是一个开源的RAG(Retrieval-Augmented Generation)引擎,基于深度文档理解,提供流线型的RAG工作流程,适用于各种规模的企业。它结合了大型语言模型(LLM)提供真实的问答能力,支持从各种复杂格式数据中引用确凿的引文。
一款由XTuner优化的LLaVA模型,结合了图像和文本处理能力。
llava-llama-3-8b-v1_1是一个由XTuner优化的LLaVA模型,它基于meta-llama/Meta-Llama-3-8B-Instruct和CLIP-ViT-Large-patch14-336,并通过ShareGPT4V-PT和InternVL-SFT进行了微调。该模型专为图像和文本的结合处理而设计,具有强大的多模态学习能力,适用于各种下游部署和评估工具包。
高效灵活的大规模模型微调工具包
XTuner是一个为大型模型(如InternLM, Llama, Baichuan, Qwen, ChatGLM)设计的高效、灵活且功能齐全的微调工具包。它支持在几乎所有GPU上进行LLM和VLM的预训练和微调,能够自动调度高性能操作,如FlashAttention和Triton内核,以提高训练吞吐量。XTuner与DeepSpeed兼容,支持多种ZeRO优化技术。它还支持各种LLMs和VLM(如LLaVA),并设计了良好的数据管道,能够适应任何格式的数据集。此外,XTuner支持多种训练算法,包括QLoRA、LoRA和全参数微调,使用户能够选择最适合其需求的解决方案。
一款小型评分器,提升大型多任务语言模型性能
Cappy是一种新型方法,旨在提高大型多任务语言模型的性能和效率。它是一个轻量级的预训练评分器,基于RoBERTa,仅有3.6亿个参数。Cappy可独立解决分类任务,或作为辅助组件提升语言模型性能。在下游任务中微调Cappy,可有效整合监督信息,提高模型表现,且不需要反向传播到语言模型参数,降低了内存需求。Cappy适用于开源和封闭源代码的语言模型,是一种高效的模型微调方法。
增强自然语言技术用于NASA科学任务方向的信息检索和智能搜索
nasa-smd-ibm-st是一个基于Bi-encoder的句子转换模型,由nasa-smd-ibm-v0.1编码器模型进行了微调训练。它使用了2.71亿个训练样本以及260万个来自NASA科学任务方向(SMD)文档的领域特定样本进行训练。该模型旨在增强自然语言技术,如信息检索和智能搜索,以应用于SMD的自然语言处理任务。该模型可广泛用于信息检索、句子相似度搜索等NASA SMD相关的科学用例。
MovieLLM是一个用于增强长视频理解的AI生成电影框架
MovieLLM由复旦大学和腾讯PCG提出,是一个创新框架,旨在为长视频创建合成的、高质量的数据。该框架利用GPT-4和文本到图像模型的力量,生成详细的脚本和相应的视觉内容。
亚马逊的大规模语音合成模型
BASE TTS是亚马逊开发的大规模文本到语音合成模型,运用了10亿参数的自动回归转换器,可将文本转换成语音代码,再通过卷积解码器生成语音波形。该模型使用了超过10万小时的公共语音数据进行训练,实现了语音自然度的新状态。还具有音素解离和压缩等新颖的语音编码技术。随着模型规模的增大,BASE TTS展现出了处理复杂句子的自然语调能力。
深入了解大型语言模型的内部工作
LLMs-from-scratch将带您逐步了解LLMs的工作原理。本书将逐步指导您创建自己的LLM,通过清晰的文本、图表和示例解释每个阶段。所描述的用于教育目的的训练和开发自己的小型但功能齐全模型的方法,与创建ChatGPT等大规模基础模型的方法相似。
大规模强化学习用于扩散模型
Text-to-image扩散模型是一类深度生成模型,展现了出色的图像生成能力。然而,这些模型容易受到来自网页规模的文本-图像训练对的隐含偏见的影响,可能无法准确地对我们关心的图像方面进行建模。这可能导致次优样本、模型偏见以及与人类伦理和偏好不符的图像。本文介绍了一种有效可扩展的算法,利用强化学习(RL)改进扩散模型,涵盖了多样的奖励函数,如人类偏好、组成性和公平性,覆盖了数百万张图像。我们阐明了我们的方法如何大幅优于现有方法,使扩散模型与人类偏好保持一致。我们进一步阐明了如何这显著改进了预训练的稳定扩散(SD)模型,生成的样本被人类偏好80.3%,同时改善了生成样本的组成和多样性。
将数据转化为知识
Denser Chatbots可以利用您的个人网站或上传的文件创建聊天机器人。Denser采用先进技术处理您的数据,并使用大型语言模型从您的特定数据中提取见解来回答您的查询。使用Retrieval Augmented Generation (RAG)方法,Denser Chatbots能够生成基于您独有的知识库的答案,提供比标准大型语言模型更个性化和相关的响应。构建和部署Denser Chatbots非常简单,只需提供您的网站URL,即可开始构建和部署,无需任何编程技能。
每小时更新全球政治、科技和商业等最新动态的人工智能新闻分析师
newsanalyst是一个人工智能新闻分析平台,每小时更新全球政治、科技和商业等领域的最新动态。它通过深度学习和自然语言处理技术,提供对全球事务的分析和预测。新闻分析师具有以下功能和优势:1. 提供全球政治、科技和商业等领域的最新动态;2. 通过深度学习和自然语言处理技术进行分析和预测;3. 提供对全球事务的深入洞察和理解;4. 帮助用户了解全球动态,做出明智的决策。新闻分析师的定价为每月29美元,定位于商业用户和对全球事务感兴趣的个人用户。
打造人工智能未来
Anthropic是一款人工智能平台,通过深度学习和自然语言处理等技术,提供先进的人工智能解决方案。我们的产品具有强大的功能和优势,可应用于图像识别、自然语言处理、机器学习等领域。定价灵活合理,定位为帮助用户实现人工智能应用的目标。无论您是开发者、研究人员还是企业,Anthropic都能满足您的需求。
让您的AI助手像人类一样交流
Quickchat AI是一款帮助公司构建自己的多语言AI助手的技术。借助我们的无代码平台和强大的集成功能,公司可以构建会话式AI界面,并将其连接到任何网站、产品、应用、游戏或智能设备。Quickchat AI由生成式AI模型(如GPT-3)驱动,可以实现多语言的自然对话,并提供自动化客户支持、线索生成等功能。
AI编程助手,助力工程团队提升效率。
Devin是一个AI编程助手,旨在帮助工程团队通过自动化代码迁移、重构等任务来提升效率。它能够自主学习、响应自然语言请求,并与用户实时协作。Devin的技术背景基于Nubank的大规模代码迁移项目,该项目涉及将一个8年历史的、数百万行代码的单体ETL迁移到子模块中。Devin通过自动化这些重复性工作,为Nubank带来了12倍的工程时间效率提升和20倍的成本节省。
大型语言模型,用于文本生成和分类
OLMo-2-1124-7B-RM是由Hugging Face和Allen AI共同开发的一个大型语言模型,专注于文本生成和分类任务。该模型基于7B参数的规模构建,旨在处理多样化的语言任务,包括聊天、数学问题解答、文本分类等。它是基于Tülu 3数据集和偏好数据集训练的奖励模型,用于初始化RLVR训练中的价值模型。OLMo系列模型的发布,旨在推动语言模型的科学研究,通过开放代码、检查点、日志和相关的训练细节,促进了模型的透明度和可访问性。
© 2024 AIbase 备案号:闽ICP备08105208号-14