需求人群:
["强化学习","机器人控制","自动化"]
使用场景示例:
使用SERL实现PCB装配任务的强化学习
使用SERL训练电缆布线任务的策略
基于SERL实现物体重定位的示例
产品特色:
包含一个高效的离策略深度强化学习方法
计算奖励和重置环境的方法
一个高质量的广泛采用的机器人控制器
一些具有挑战性的示例任务
浏览量:26
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
SERL是一个高效的机器人强化学习软件套件
SERL是一个经过精心实现的代码库,包含了一个高效的离策略深度强化学习方法,以及计算奖励和重置环境的方法,一个高质量的广泛采用的机器人控制器,以及一些具有挑战性的示例任务。它为社区提供了一个资源,描述了它的设计选择,并呈现了实验结果。令人惊讶的是,我们发现我们的实现可以实现非常高效的学习,仅需25到50分钟的训练即可获得PCB装配、电缆布线和物体重定位等策略,改进了文献中报告的类似任务的最新结果。这些策略实现了完美或接近完美的成功率,即使在扰动下也具有极强的鲁棒性,并呈现出新兴的恢复和修正行为。我们希望这些有前途的结果和我们的高质量开源实现能为机器人社区提供一个工具,以促进机器人强化学习的进一步发展。
模块化仿人机器人,用于强化学习训练
Agibot X1是由Agibot开发的模块化仿人机器人,具有高自由度,基于Agibot开源框架AimRT作为中间件,并使用强化学习进行运动控制。该项目是Agibot X1使用的强化学习训练代码,可以与Agibot X1提供的推理软件结合用于真实机器人和模拟步行调试,或导入其他机器人模型进行训练。
一个提供代码Artifacts的在线平台
通义千问2.5-代码-Artifacts是一个专注于代码Artifacts的平台,旨在为用户提供代码相关的资源和服务。该平台可能包含代码示例、开发工具、代码管理等功能,以提高开发者的工作效率和代码质量。它可能依托于人工智能技术,提供智能代码辅助和自动化测试等功能,具有提高开发效率、降低错误率等优点。
将通用人工智能带入物理世界
Physical Intelligence (π) 是一个由工程师、科学家、机器人学家和公司建设者组成的团队,致力于开发基础模型和学习算法,以驱动当今的机器人和未来的物理驱动设备。该团队旨在将通用人工智能技术应用于物理世界,推动机器人技术的发展和创新。
机器人硬件平台,集成传感器和末端执行器。
Digit Plexus是一个机器人硬件平台,旨在为各种机器人手集成触觉传感器提供标准化的硬件-软件解决方案。该平台能够将基于视觉和基于皮肤的触觉传感器(如Digit、Digit 360和ReSkin)整合到控制板中,并通过单根电缆将所有数据编码传输到主机电脑。这种集成方式允许无缝的数据收集、控制和分析。产品背景信息显示,Digit Plexus与Wonik Robotics合作开发了基于该平台的下一代Allegro Hand,并且可以通过特定链接表达早期访问的兴趣。
首款通用型机器人基础模型
π0是一个通用型机器人基础模型,旨在通过实体化训练让AI系统获得物理智能,能够执行各种任务,就像大型语言模型和聊天机器人助手一样。π0通过训练在机器人上的实体经验获得物理智能,能够直接输出低级电机命令,控制多种不同的机器人,并可以针对特定应用场景进行微调。π0的开发代表了人工智能在物理世界应用方面的重要进步,它通过结合大规模多任务和多机器人数据收集以及新的网络架构,提供了迄今为止最有能力、最灵巧的通用型机器人政策。
模块化仿人机器人,具有高自由度
Agibot X1是由Agibot开发的模块化仿人机器人,具有高自由度,基于Agibot开源框架AimRT作为中间件,并使用强化学习进行运动控制。该项目包括模型推理、平台驱动和软件仿真等多个功能模块。AimRT框架是一个用于机器人应用开发的开源框架,它提供了一套完整的工具和库,以支持机器人的感知、决策和行动。Agibot X1项目的重要性在于它为机器人研究和教育提供了一个高度可定制和可扩展的平台。
全栈开源机器人
智元灵犀X1是一款开源人形机器人,具有29个关节和2个夹爪,支持扩展头部3自由度。它提供了详细的开发指南和开源代码,使开发者能够快速搭建并进行二次开发。该产品代表了智能机器人领域的先进技术,具有高度的灵活性和可扩展性,适用于教育、研究和商业开发等多种场景。
未来感机器人,轻松上手,玩得尽兴。
BabyAlpha Chat 是一款具有未来感的机器人模型,全身搭载12个高性能执行器,配合蔚蓝自研五层运动控制算法,使得其运动性能极其出众。最大前进速度可达每小时3.2公里,最大旋转速度可达每秒180度。BabyAlpha Chat 不仅是一个高科技玩具,也是教育和娱乐的完美结合,适合各个年龄段的用户。其价格亲民,起售价为4999元,并有特惠活动直降2000元,截止日期为11月16日。
特斯拉自动驾驶技术与机器人的未来愿景
We, Robot 是特斯拉公司展示其在自动驾驶技术和机器人技术领域愿景的页面。它强调了特斯拉对于创建可持续未来、提高交通效率、可负担性和安全性的承诺。该页面介绍了特斯拉的全自动驾驶技术(监督)以及未来自动驾驶汽车和机器人的潜在应用,如Robotaxi、Robovan和Tesla Bot。这些技术旨在通过自动化提高日常生活的便利性,同时减少交通事故,降低交通成本。
先进的通用机器人代理
GR-2是一个先进的通用机器人代理,专为多样化和可泛化的机器人操作而设计。它首先在大量互联网视频上进行预训练,以捕捉世界的动态。这种大规模预训练涉及3800万视频剪辑和超过500亿个标记,使GR-2能够在随后的策略学习中跨广泛范围的机器人任务和环境进行泛化。随后,GR-2针对视频生成和动作预测进行了微调,使用机器人轨迹。它展示了令人印象深刻的多任务学习能力,在100多个任务中平均成功率达到97.7%。此外,GR-2在新的、以前未见过的场景中表现出色,包括新的背景、环境、对象和任务。值得注意的是,GR-2随着模型大小的增加而高效扩展,突显了其持续增长和应用的潜力。
将Hugging Face Space或Gradio应用转化为Discord机器人
gradio-bot是一个可以将Hugging Face Space或Gradio应用转化为Discord机器人的工具。它允许开发者通过简单的命令行操作,将现有的机器学习模型或应用快速部署到Discord平台上,实现自动化交互。这不仅提高了应用的可达性,还为开发者提供了一个与用户直接交互的新渠道。
谷歌旗下领先的人工智能研究公司
Google DeepMind 是谷歌旗下的一家领先的人工智能公司,专注于开发先进的机器学习算法和系统。DeepMind 以其在深度学习和强化学习领域的开创性工作而闻名,其研究涵盖了从游戏到医疗保健等多个领域。DeepMind 的目标是通过构建智能系统来解决复杂的问题,推动科学和医学的进步。
家用智能人形机器人,学习照顾您的生活。
NEO是1X Technologies公司开发的一款家用智能人形机器人,它通过模拟学习,能够理解自然语言和物理空间,执行实际任务。NEO基于EVE机器人的现实世界经验,通过1X Studio的远程操作训练,能够智能地完成任务。NEO的主要优点包括安全性、智能性和可扩展性,旨在为家庭提供帮助,同时保持安全和高效。
轻量级、多语言的先进文本生成模型
Phi-3.5-mini-instruct 是微软基于高质量数据构建的轻量级、多语言的先进文本生成模型。它专注于提供高质量的推理密集型数据,支持128K的token上下文长度,经过严格的增强过程,包括监督式微调、近端策略优化和直接偏好优化,确保精确的指令遵循和强大的安全措施。
下一代具有规划和自我修复能力的AI代理
Agent Q是MultiOn公司研发的新一代AI代理模型,它通过结合搜索、自我批评和强化学习,创建能够规划和自我修复的先进自主网络代理。它通过引导蒙特卡洛树搜索(MCTS)、AI自我批评和直接偏好优化(DPO)算法,解决了传统大型语言模型(LLMs)在动态环境中多步推理任务的挑战,提高了在复杂环境中的成功率。
机器人乒乓球竞赛水平达到业余人类水平
这是Google DeepMind团队研发的机器人乒乓球代理模型,它通过深度学习技术,实现了与业余人类选手在乒乓球比赛中的竞争力。这项技术的重要性在于它不仅推动了机器人在高速运动、实时精确决策和战略决策制定方面的技术发展,而且为机器人与人类直接竞争提供了一个有价值的基准。
通过自然语言控制机器人的模拟平台。
LuckyRobots是一个致力于使机器人技术对普通软件工程师可用的模拟平台,通过自然语言控制机器人执行任务,无需依赖ROS和物理硬件。平台提供了虚拟环境、物理模拟和多摄像头输入,支持用户部署和测试端到端的AI模型。
多语言对话生成模型
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),支持8种语言,专为对话使用案例优化,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)来提高安全性和有用性。
创新机器人技术,引领未来智能生活
Clone Incorporated是一个专注于机器人技术的公司,致力于开发和提供创新的机器人解决方案,以提高生产效率和改善生活质量。公司由Dhanush Radhakrishnan和Łukasz Koźlik担任CTO,拥有强大的技术背景和专业团队。产品具有高度的技术先进性和创新性,能够满足不同行业和个人的需求。
使用自主强化学习训练野外设备控制代理
DigiRL是一个创新的在线强化学习算法,用于训练能够在野外环境中控制设备的智能代理。它通过自主价值评估模型(VLM)来解决开放式的、现实世界中的Android任务。DigiRL的主要优点包括能够利用现有的非最优离线数据集,并通过离线到在线的强化学习来鼓励代理从自身的尝试和错误中学习。该模型使用指令级价值函数来隐式构建自动课程,优先考虑对代理最有价值的任务,并通过步进级价值函数挑选出在轨迹中对目标有贡献的有利动作。
多维奖励模型,助力构建自定义大型语言模型。
Nemotron-4-340B-Reward是由NVIDIA开发的多维奖励模型,用于合成数据生成管道,帮助研究人员和开发者构建自己的大型语言模型(LLMs)。该模型由Nemotron-4-340B-Base模型和一个线性层组成,能够将响应末尾的标记转换为五个标量值,对应于HelpSteer2属性。它支持最多4096个标记的上下文长度,并能够对每个助手轮次的五个属性进行评分。
开源视觉-语言-动作模型,推动机器人操作技术发展。
OpenVLA是一个具有7亿参数的开源视觉-语言-动作(VLA)模型,通过在Open X-Embodiment数据集上的970k机器人剧集进行预训练。该模型在通用机器人操作策略上设定了新的行业标准,支持开箱即用控制多个机器人,并且可以通过参数高效的微调快速适应新的机器人设置。OpenVLA的检查点和PyTorch训练流程完全开源,模型可以从HuggingFace下载并进行微调。
将想法转化为设计和代码的创意平台。
UImagine是一个创新的在线平台,允许用户通过描述想法、附加截图、解释风格来获取设计和代码。它支持快速将创意转化为可视化的界面和功能实现,为设计师和开发者提供了一个协作和创新的空间。
通过强化学习微调大型视觉-语言模型作为决策代理
RL4VLM是一个开源项目,旨在通过强化学习微调大型视觉-语言模型,使其成为能够做出决策的智能代理。该项目由Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Alane Suhr, Saining Xie, Yann LeCun, Yi Ma, Sergey Levine等研究人员共同开发。它基于LLaVA模型,并采用了PPO算法进行强化学习微调。RL4VLM项目提供了详细的代码库结构、入门指南、许可证信息以及如何引用该研究的说明。
扩散世界模型中训练的强化学习代理
DIAMOND(DIffusion As a Model Of eNvironment Dreams)是一个在扩散世界模型中训练的强化学习代理,用于雅达利游戏中的视觉细节至关重要的世界建模。它通过自回归想象在Atari游戏子集上进行训练,可以快速安装并尝试预先训练的世界模型。
为真实世界机器人提供最先进的机器学习模型、数据集和工具。
LeRobot 是一个旨在降低进入机器人领域的门槛,让每个人都能贡献并从共享数据集和预训练模型中受益的开源项目。它包含了在真实世界中经过验证的最先进的方法,特别关注模仿学习和强化学习。LeRobot 提供了一组预训练模型、带有人类收集演示的数据集和模拟环境,以便用户无需组装机器人即可开始。未来几周内,计划增加对最实惠和最有能力的真实世界机器人的支持。
全球首款通用型人形机器人,由创新的Carbon™ AI控制系统驱动,专为工作设计。
Phoenix™是首款由Carbon™ AI控制系统驱动的通用型人形机器人,专为工作而设计。它被《时代》杂志评为2023年最佳发明之一。Sanctuary技术通过远程操控或监督的通用机器人,帮助人们更安全、高效、可持续地工作,同时创造新的就业机会,解决全球劳动力短缺问题,并为那些身体能力有限的人带来新的希望和机会。
© 2024 AIbase 备案号:闽ICP备08105208号-14