需求人群:
"该产品适合机器人研究机构、制造业和物流行业,因为它们需要高效、精准的机器人操作来完成复杂的任务,同时需要快速的训练和部署能力。HOMIE 的低成本硬件系统和高效的训练框架使其成为这些领域的理想选择。"
使用场景示例:
在物流仓库中,机器人通过 HOMIE 系统快速搬运货物,提高工作效率。
在实验室中,研究人员使用 HOMIE 系统训练机器人进行复杂的实验操作。
在工厂环境中,机器人通过 HOMIE 系统完成零部件的装配和搬运任务。
产品特色:
通过强化学习训练框架,实现机器人在动态上肢姿势下的平衡能力。
支持机器人快速、稳健地蹲下至指定高度,适应不同任务需求。
利用对称性优化训练过程,提高数据效率并保证策略的对称性。
集成等构外骨骼手臂、运动感应手套和踏板,实现全身控制。
支持多种机器人平台,如 Unitree G1 和 Fourier GR-1。
提供高效的遥操作体验,比传统逆运动学方法快约两倍。
验证了所收集数据对模仿学习的有效性,可扩展至更多任务。
支持在模拟环境中进行任务验证,降低真实世界中的成本。
使用教程:
1. 准备硬件系统,包括等构外骨骼手臂、运动感应手套和踏板。
2. 安装并配置强化学习训练框架,选择合适的机器人模型(如 Unitree G1 或 Fourier GR-1)。
3. 在模拟环境中训练机器人,使用上肢姿势课程、高度跟踪奖励和对称性优化。
4. 将训练好的策略部署到真实机器人上。
5. 通过外骨骼设备和踏板进行遥操作,完成行走、蹲下和抓取等任务。
6. 根据任务需求调整机器人的动作,确保任务的高效完成。
7. 收集遥操作数据,用于进一步的模仿学习和任务扩展。
浏览量:47
最新流量情况
月访问量
190
平均访问时长
00:00:00
每次访问页数
1.00
跳出率
84.75%
流量来源
直接访问
8.60%
自然搜索
43.49%
邮件
0
外链引荐
47.92%
社交媒体
0
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
阿拉伯联合酋长国
48.32%
日本
20.39%
美国
31.29%
HOMIE 是一种新型的人形机器人遥操作系统,集成人体运动捕捉与强化学习训练框架,用于实现精准的行走与操作任务。
HOMIE 是一种创新的人形机器人遥操作解决方案,旨在通过强化学习和低成本的外骨骼硬件系统,实现精准的行走与操作任务。该技术的重要性在于它解决了传统遥操作系统的低效性和不稳定性问题,通过人体运动捕捉和强化学习训练框架,使机器人能够更加自然地执行复杂的任务。其主要优点包括高效的任务完成能力、无需复杂的运动捕捉设备以及快速的训练时间。该产品主要面向机器人研究机构、制造业和物流行业,价格未明确公开,但其硬件系统成本较低,具有较高的性价比。
SERL是一个高效的机器人强化学习软件套件
SERL是一个经过精心实现的代码库,包含了一个高效的离策略深度强化学习方法,以及计算奖励和重置环境的方法,一个高质量的广泛采用的机器人控制器,以及一些具有挑战性的示例任务。它为社区提供了一个资源,描述了它的设计选择,并呈现了实验结果。令人惊讶的是,我们发现我们的实现可以实现非常高效的学习,仅需25到50分钟的训练即可获得PCB装配、电缆布线和物体重定位等策略,改进了文献中报告的类似任务的最新结果。这些策略实现了完美或接近完美的成功率,即使在扰动下也具有极强的鲁棒性,并呈现出新兴的恢复和修正行为。我们希望这些有前途的结果和我们的高质量开源实现能为机器人社区提供一个工具,以促进机器人强化学习的进一步发展。
用于强化学习的Unitree机器人平台
Unitree RL GYM是一个基于Unitree机器人的强化学习平台,支持Unitree Go2、H1、H1_2、G1等型号。该平台提供了一个集成环境,允许研究人员和开发者训练和测试强化学习算法在真实或模拟的机器人上的表现。它的重要性在于推动机器人自主性和智能技术的发展,特别是在需要复杂决策和运动控制的应用中。Unitree RL GYM是开源的,可以免费使用,主要面向科研人员和机器人爱好者。
模块化仿人机器人,用于强化学习训练
Agibot X1是由Agibot开发的模块化仿人机器人,具有高自由度,基于Agibot开源框架AimRT作为中间件,并使用强化学习进行运动控制。该项目是Agibot X1使用的强化学习训练代码,可以与Agibot X1提供的推理软件结合用于真实机器人和模拟步行调试,或导入其他机器人模型进行训练。
Figure是第一家专注于研发通用型人形机器人的AI机器人公司。
Figure是一个创新的AI机器人公司,致力于研发第一台通用型人形机器人Figure 01。Figure 01集成了人形的灵巧性和前沿的AI技术,可广泛应用于制造业、物流、仓储和零售等领域,支持人类完成更多工作。该机器人高5.6英尺,载重20公斤,重60公斤,工作时间5小时,移动速度每秒1.2米。Figure还拥有世界顶级的机器人团队,团队成员在AI和人形机器人领域拥有超过100年的丰富经验。
为真实世界机器人提供最先进的机器学习模型、数据集和工具。
LeRobot 是一个旨在降低进入机器人领域的门槛,让每个人都能贡献并从共享数据集和预训练模型中受益的开源项目。它包含了在真实世界中经过验证的最先进的方法,特别关注模仿学习和强化学习。LeRobot 提供了一组预训练模型、带有人类收集演示的数据集和模拟环境,以便用户无需组装机器人即可开始。未来几周内,计划增加对最实惠和最有能力的真实世界机器人的支持。
家用智能人形机器人,学习照顾您的生活。
NEO是1X Technologies公司开发的一款家用智能人形机器人,它通过模拟学习,能够理解自然语言和物理空间,执行实际任务。NEO基于EVE机器人的现实世界经验,通过1X Studio的远程操作训练,能够智能地完成任务。NEO的主要优点包括安全性、智能性和可扩展性,旨在为家庭提供帮助,同时保持安全和高效。
先进的人形机器人技术,助力人类实现潜力。
Apptronik是一家从德克萨斯大学奥斯汀分校的人类中心机器人实验室分离出来的公司,致力于开发下一代能够改变我们生活和工作方式的机器人。公司的产品线包括从外骨骼到仿人上半身、双足移动平台和独特的机器人手臂,这些产品能够举起超过自身重量的物体。这些经验和学习成果促成了Apollo——世界上最先进的人形机器人的开发。Apptronik的产品和技术不仅能够处理重复性任务,还能够丰富人类生活,体现了公司在创造以人为中心的解决方案方面的道德承诺。
大规模强化学习用于扩散模型
Text-to-image扩散模型是一类深度生成模型,展现了出色的图像生成能力。然而,这些模型容易受到来自网页规模的文本-图像训练对的隐含偏见的影响,可能无法准确地对我们关心的图像方面进行建模。这可能导致次优样本、模型偏见以及与人类伦理和偏好不符的图像。本文介绍了一种有效可扩展的算法,利用强化学习(RL)改进扩散模型,涵盖了多样的奖励函数,如人类偏好、组成性和公平性,覆盖了数百万张图像。我们阐明了我们的方法如何大幅优于现有方法,使扩散模型与人类偏好保持一致。我们进一步阐明了如何这显著改进了预训练的稳定扩散(SD)模型,生成的样本被人类偏好80.3%,同时改善了生成样本的组成和多样性。
JaxMARL - 多智能体强化学习库
JaxMARL 是一个多智能体强化学习库,结合了易用性和 GPU 加速效能。它支持常用的多智能体强化学习环境以及流行的基准算法。目标是提供一个全面评估多智能体强化学习方法的库,并与相关基准进行比较。同时,它还引入了 SMAX,这是一个简化版的流行的星际争霸多智能体挑战环境,无需运行星际争霸 II 游戏引擎。
扩散世界模型中训练的强化学习代理
DIAMOND(DIffusion As a Model Of eNvironment Dreams)是一个在扩散世界模型中训练的强化学习代理,用于雅达利游戏中的视觉细节至关重要的世界建模。它通过自回归想象在Atari游戏子集上进行训练,可以快速安装并尝试预先训练的世界模型。
全栈开源机器人
智元灵犀X1是一款开源人形机器人,具有29个关节和2个夹爪,支持扩展头部3自由度。它提供了详细的开发指南和开源代码,使开发者能够快速搭建并进行二次开发。该产品代表了智能机器人领域的先进技术,具有高度的灵活性和可扩展性,适用于教育、研究和商业开发等多种场景。
多目标强化学习框架,文本转图像生成
Parrot 是一种多目标强化学习框架,专为文本转图像生成而设计。它通过批量 Pareto 最优选择的方式,自动识别在 T2I 生成的 RL 优化过程中不同奖励之间的最佳权衡。此外,Parrot采用了 T2I 模型和提示扩展网络的联合优化方法,促进了生成质量感知的文本提示,从而进一步提高了最终图像质量。为了抵消由于提示扩展而可能导致的原始用户提示的潜在灾难性遗忘,我们在推理时引入了原始提示中心化指导,确保生成的图像忠实于用户输入。大量实验和用户研究表明,Parrot在各种质量标准,包括美学、人类偏好、图像情感和文本-图像对齐方面,均优于几种基线方法。
基于深度强化学习的模型微调框架
ReFT是一个开源的研究项目,旨在通过深度强化学习技术对大型语言模型进行微调,以提高其在特定任务上的表现。该项目提供了详细的代码和数据,以便研究人员和开发者能够复现论文中的结果。ReFT的主要优点包括能够利用强化学习自动调整模型参数,以及通过微调提高模型在特定任务上的性能。产品背景信息显示,ReFT基于Codellama和Galactica模型,遵循Apache2.0许可证。
使用自主强化学习训练野外设备控制代理
DigiRL是一个创新的在线强化学习算法,用于训练能够在野外环境中控制设备的智能代理。它通过自主价值评估模型(VLM)来解决开放式的、现实世界中的Android任务。DigiRL的主要优点包括能够利用现有的非最优离线数据集,并通过离线到在线的强化学习来鼓励代理从自身的尝试和错误中学习。该模型使用指令级价值函数来隐式构建自动课程,优先考虑对代理最有价值的任务,并通过步进级价值函数挑选出在轨迹中对目标有贡献的有利动作。
用于强化学习验证的数学问题数据集
RLVR-GSM-MATH-IF-Mixed-Constraints数据集是一个专注于数学问题的数据集,它包含了多种类型的数学问题和相应的解答,用于训练和验证强化学习模型。这个数据集的重要性在于它能够帮助开发更智能的教育辅助工具,提高学生解决数学问题的能力。产品背景信息显示,该数据集由allenai在Hugging Face平台上发布,包含了GSM8k和MATH两个子集,以及带有可验证约束的IF Prompts,适用于MIT License和ODC-BY license。
开源视觉-语言-动作模型,推动机器人操作技术发展。
OpenVLA是一个具有7亿参数的开源视觉-语言-动作(VLA)模型,通过在Open X-Embodiment数据集上的970k机器人剧集进行预训练。该模型在通用机器人操作策略上设定了新的行业标准,支持开箱即用控制多个机器人,并且可以通过参数高效的微调快速适应新的机器人设置。OpenVLA的检查点和PyTorch训练流程完全开源,模型可以从HuggingFace下载并进行微调。
人形机器人多功能神经全身控制器
HOVER是一个针对人形机器人的多功能神经全身控制器,它通过模仿全身运动来提供通用的运动技能,学习多种全身控制模式。HOVER通过多模式策略蒸馏框架将不同的控制模式整合到一个统一的策略中,实现了在不同控制模式之间的无缝切换,同时保留了每种模式的独特优势。这种控制器提高了人形机器人在多种模式下的控制效率和灵活性,为未来的机器人应用提供了一个健壮且可扩展的解决方案。
四足机器人室内移动操作系统
Helpful DoggyBot是一个四足机器人室内移动操作系统,它通过前端夹持装置进行物体操作,使用在模拟环境中训练的低级控制器实现敏捷技能,如攀爬和全身倾斜。此外,它还结合了预训练的视觉-语言模型(VLMs)进行语义理解和命令生成。该系统在没有实际数据收集或训练的情况下,能在未见过的环境中零样本泛化完成任务,如按照用户的指令在攀爬过后的床边取回随机放置的玩具,成功率达到60%。
使用Apple Vision Pro实现人形机器人Unitree H1_2的遥控操作。
这是一个开源项目,用于实现人形机器人Unitree H1_2的遥控操作。它利用了Apple Vision Pro技术,允许用户通过虚拟现实环境来控制机器人。该项目在Ubuntu 20.04和Ubuntu 22.04上进行了测试,并且提供了详细的安装和配置指南。该技术的主要优点包括能够提供沉浸式的遥控体验,并且支持在模拟环境中进行测试,为机器人遥控领域提供了新的解决方案。
利用强化学习提升扩散大语言模型的推理能力。
该模型通过强化学习和高质量推理轨迹的掩蔽自监督微调,实现了对扩散大语言模型的推理能力的提升。此技术的重要性在于它能够优化模型的推理过程,减少计算成本,同时保证学习动态的稳定性。适合希望在写作和推理任务中提升效率的用户。
AI国际象棋机器人,智能对弈与教学
元萝卜AI下棋机器人是商汤科技旗下家用机器人品牌,通过AI科技为孩子的健康、学习、快乐成长保驾护航。产品具备陪练涨棋、棋力闯关、巅峰对决、在线对弈、残局挑战、AI打谱、AI习题精练、棋局分享等功能,旨在通过真实棋盘棋子的交互,保护孩子视力,同时提高棋艺水平。
用于人形机器人学习的通用基础模型
NVIDIA Project GR00T是一种通用基础模型,可在仿真和真实世界中改变人形机器人的学习方式。通过在NVIDIA GPU加速模拟中进行训练,GR00T使得人形机器人能够从少量的人类演示中通过模仿学习和NVIDIA Isaac Lab进行强化学习,并可从视频数据生成机器人动作。GR00T模型接受多模态指令和过去的交互作为输入,并输出机器人需要执行的动作。
智能AI聊天助手,提供多语言对话和个性化服务。
Ai Chat机器人Plus是一款基于人工智能技术的聊天机器人,它能够理解并流畅地与用户进行交流,提供信息查询、日常咨询、技术支持等服务。这款产品通过模仿人类的对话方式,为用户提供了一个直观、便捷的交互体验。它主要的优点包括快速响应、高准确率的语义理解以及个性化的服务体验。Ai Chat机器人Plus适用于需要快速、智能对话解决方案的个人和企业用户。
机器人教学框架,无需在野机器人
通用操作接口(UMI)是一个数据收集和策略学习框架,允许直接将现场人类演示中的技能转移到可部署的机器人策略。UMI采用手持夹具与仔细的界面设计相结合,实现便携、低成本和信息丰富的数据收集,用于挑战性的双手和动态操作演示。为促进可部署的策略学习,UMI结合了精心设计的策略界面,具有推理时延迟匹配和相对轨迹动作表示。从而产生的学习策略与硬件无关,并且可以在多个机器人平台上部署。配备这些功能,UMI框架解锁了新的机器人操作功能,仅通过为每个任务更改训练数据,允许泛化的动态、双手、精确和长时间的行为,从而实现零次调整。我们通过全面的真实环境实验演示了UMI的通用性和有效性,其中仅通过使用各种人类演示进行训练的UMI策略,在面对新环境和对象时实现了零次调整的泛化。
通过强化学习微调大型视觉-语言模型作为决策代理
RL4VLM是一个开源项目,旨在通过强化学习微调大型视觉-语言模型,使其成为能够做出决策的智能代理。该项目由Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Alane Suhr, Saining Xie, Yann LeCun, Yi Ma, Sergey Levine等研究人员共同开发。它基于LLaVA模型,并采用了PPO算法进行强化学习微调。RL4VLM项目提供了详细的代码库结构、入门指南、许可证信息以及如何引用该研究的说明。
© 2025 AIbase 备案号:闽ICP备08105208号-14