需求人群:
"该产品主要面向软件工程师、研究人员和开发团队,帮助他们提升代码质量和开发效率。通过强化学习优化的推理能力,SWE-RL 能够为开发者提供更智能的代码生成和优化建议,从而减少手动编码的工作量并提高代码的可维护性。此外,它也适用于研究机构,用于探索强化学习在软件工程中的应用。"
使用场景示例:
开发者使用 SWE-RL 优化 Python 代码片段,提升代码质量
研究团队利用 SWE-RL 探索强化学习在代码生成中的应用
开发团队通过 SWE-RL 自动生成代码注释和文档
产品特色:
利用开源软件演变数据进行模型训练
通过规则驱动的奖励机制优化推理能力
支持代码生成与优化任务
提供基于序列相似性的奖励函数实现
支持与现有代码编辑工具集成
提供代码片段级别的搜索与替换功能
支持多种编程语言的代码推理
提供详细的代码修改建议与反馈
使用教程:
1. 克隆 SWE-RL 代码仓库到本地
2. 安装依赖并配置开发环境
3. 使用提供的奖励函数实现对代码片段进行推理优化
4. 根据输出结果调整代码或进一步优化模型
5. 集成到现有代码编辑工具中以实现自动化代码优化
浏览量:48
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
通过强化学习提升大型语言模型在开源软件演变中的推理能力
SWE-RL 是由 Facebook Research 提出的一种基于强化学习的大型语言模型推理技术,旨在利用开源软件演变数据提升模型在软件工程任务中的表现。该技术通过规则驱动的奖励机制,优化模型的推理能力,使其能够更好地理解和生成高质量的代码。SWE-RL 的主要优点在于其创新性的强化学习方法和对开源数据的有效利用,为软件工程领域带来了新的可能性。该技术目前处于研究阶段,尚未明确商业化定价,但其在提升开发效率和代码质量方面具有显著潜力。
通过强化学习微调大型视觉-语言模型作为决策代理
RL4VLM是一个开源项目,旨在通过强化学习微调大型视觉-语言模型,使其成为能够做出决策的智能代理。该项目由Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Alane Suhr, Saining Xie, Yann LeCun, Yi Ma, Sergey Levine等研究人员共同开发。它基于LLaVA模型,并采用了PPO算法进行强化学习微调。RL4VLM项目提供了详细的代码库结构、入门指南、许可证信息以及如何引用该研究的说明。
AI模型软件工程能力评估工具
SWE-bench Verified是OpenAI发布的一个经过人工验证的SWE-bench子集,旨在更可靠地评估AI模型解决现实世界软件问题的能力。它通过提供代码库和问题描述,挑战AI生成解决所描述问题的补丁。这个工具的开发是为了提高模型自主完成软件工程任务的能力评估的准确性,是OpenAI准备框架中中等风险级别的关键组成部分。
利用强化学习提升扩散大语言模型的推理能力。
该模型通过强化学习和高质量推理轨迹的掩蔽自监督微调,实现了对扩散大语言模型的推理能力的提升。此技术的重要性在于它能够优化模型的推理过程,减少计算成本,同时保证学习动态的稳定性。适合希望在写作和推理任务中提升效率的用户。
基于深度强化学习的模型微调框架
ReFT是一个开源的研究项目,旨在通过深度强化学习技术对大型语言模型进行微调,以提高其在特定任务上的表现。该项目提供了详细的代码和数据,以便研究人员和开发者能够复现论文中的结果。ReFT的主要优点包括能够利用强化学习自动调整模型参数,以及通过微调提高模型在特定任务上的性能。产品背景信息显示,ReFT基于Codellama和Galactica模型,遵循Apache2.0许可证。
开源编码 LLM,专为软件工程任务设计。
Kimi-Dev 是一款强大的开源编码 LLM,旨在解决软件工程中的问题。它通过大规模强化学习优化,确保在真实开发环境中的正确性和稳健性。Kimi-Dev-72B 在 SWE-bench 验证中实现了 60.4% 的性能,超越其他开源模型,是目前最先进的编码 LLM 之一。该模型可在 Hugging Face 和 GitHub 上下载和部署,适合开发者和研究人员使用。
DeepSeek-R1-Distill-Llama-70B 是一款基于强化学习优化的大型语言模型,专注于推理和对话能力。
DeepSeek-R1-Distill-Llama-70B 是由 DeepSeek 团队开发的一款大型语言模型,基于 Llama-70B 架构并通过强化学习进行优化。该模型在推理、对话和多语言任务中表现出色,支持多种应用场景,包括代码生成、数学推理和自然语言处理。其主要优点是高效的推理能力和对复杂问题的解决能力,同时支持开源和商业使用。该模型适用于需要高性能语言生成和推理能力的企业和研究机构。
开源AI软件工程师
Devika AI是一个开源的AI软件工程师,可以理解高级人类指令,将其分解为步骤,研究相关信息并生成相应代码。它使用Claude 3、GPT 4、GPT 3.5和Local LLMs via Ollama。
专为软件改进设计的开源大型语言模型。
Lingma SWE-GPT是一个开源的大型语言模型,专注于软件工程领域的任务,旨在提供智能化的开发支持。该模型基于Qwen系列基础模型,经过额外训练以增强其在复杂软件工程任务中的能力。它在软件工程智能代理的权威排行榜上表现出色,适合需要自动化软件改进的开发团队和研究人员。
大规模强化学习用于扩散模型
Text-to-image扩散模型是一类深度生成模型,展现了出色的图像生成能力。然而,这些模型容易受到来自网页规模的文本-图像训练对的隐含偏见的影响,可能无法准确地对我们关心的图像方面进行建模。这可能导致次优样本、模型偏见以及与人类伦理和偏好不符的图像。本文介绍了一种有效可扩展的算法,利用强化学习(RL)改进扩散模型,涵盖了多样的奖励函数,如人类偏好、组成性和公平性,覆盖了数百万张图像。我们阐明了我们的方法如何大幅优于现有方法,使扩散模型与人类偏好保持一致。我们进一步阐明了如何这显著改进了预训练的稳定扩散(SD)模型,生成的样本被人类偏好80.3%,同时改善了生成样本的组成和多样性。
为软件工程挑战打造的先进基础AI模型
poolside是一个为软件工程挑战而构建的先进基础AI模型,它通过在用户代码上进行微调,学习项目的独特之处,以理解通用模型无法理解的复杂性。它建立在poolside基础之上,每天都能变得更好。除了先进的代码编写模型,poolside还构建了一个直观的编辑器助手,并提供了一个开发者可以构建的API。poolside由Jason Warner和Eiso Kant于2023年4月创立,他们之前在AI和软件工程领域有着丰富的经验。
大语言模型的提示工程指南
提示工程指南是一份全面介绍提示工程的指南,包括基本概念、设计提示的通用技巧、提示技术、提示应用等内容。它帮助用户更好地了解大型语言模型的能力和局限性,并掌握与大语言模型交互和研发的各种技能和技术。
世界领先的AI软件工程师
Genie是一款AI软件工程模型,它在SWE-Bench行业标准基准测试中取得了30%的评估分数,远超其他同类产品。Genie能够独立或与用户协作解决bug、构建功能、重构代码,就像与同事合作一样。它通过与GitHub问题跟踪器的直接集成,简化了工作流程,确保完全理解特定任务和目标。
windsurf_ai推出首个针对软件工程流程优化的模型家族 SWE-1。
SWE-1 是windsurf_ai首个为整个软件工程流程优化的模型家族,旨在加速软件开发 99%。与传统的仅能编写代码的模型相比,SWE-1 不仅能编写代码,还能处理终端操作、访问其他知识和互联网、测试产品和理解用户反馈。SWE-1 系列包括 SWE-1、SWE-1-lite 和 SWE-1-mini 三种模型,旨在满足不同用户的需求。
医疗领域复杂推理的大型语言模型
HuatuoGPT-o1是一个专为医疗复杂推理设计的大语言模型,能够识别错误、探索替代策略并完善答案。该模型通过利用可验证的医疗问题和专门的医疗验证器,推进了复杂推理的发展。HuatuoGPT-o1的主要优点包括:使用验证器指导复杂推理轨迹的搜索,以微调大型语言模型;应用基于验证器奖励的强化学习(PPO)进一步提升复杂推理能力。HuatuoGPT-o1的开源模型、数据和代码,使其在医疗教育和研究领域具有重要价值。
世界首款AI软件工程师,自主完成复杂工程任务
Devin是世界上第一款完全自主的AI软件工程师。具有长期推理和规划能力,可执行复杂工程任务,并与用户进行实时协作。帮助工程师专注于更有趣的问题,推动工程团队实现更宏伟的目标。
扩散世界模型中训练的强化学习代理
DIAMOND(DIffusion As a Model Of eNvironment Dreams)是一个在扩散世界模型中训练的强化学习代理,用于雅达利游戏中的视觉细节至关重要的世界建模。它通过自回归想象在Atari游戏子集上进行训练,可以快速安装并尝试预先训练的世界模型。
JaxMARL - 多智能体强化学习库
JaxMARL 是一个多智能体强化学习库,结合了易用性和 GPU 加速效能。它支持常用的多智能体强化学习环境以及流行的基准算法。目标是提供一个全面评估多智能体强化学习方法的库,并与相关基准进行比较。同时,它还引入了 SMAX,这是一个简化版的流行的星际争霸多智能体挑战环境,无需运行星际争霸 II 游戏引擎。
一个高效的强化学习框架,用于训练推理和搜索引擎调用的语言模型。
Search-R1 是一个强化学习框架,旨在训练能够进行推理和调用搜索引擎的语言模型(LLMs)。它基于 veRL 构建,支持多种强化学习方法和不同的 LLM 架构,使得在工具增强的推理研究和开发中具备高效性和可扩展性。
多维奖励模型,助力构建自定义大型语言模型。
Nemotron-4-340B-Reward是由NVIDIA开发的多维奖励模型,用于合成数据生成管道,帮助研究人员和开发者构建自己的大型语言模型(LLMs)。该模型由Nemotron-4-340B-Base模型和一个线性层组成,能够将响应末尾的标记转换为五个标量值,对应于HelpSteer2属性。它支持最多4096个标记的上下文长度,并能够对每个助手轮次的五个属性进行评分。
SERL是一个高效的机器人强化学习软件套件
SERL是一个经过精心实现的代码库,包含了一个高效的离策略深度强化学习方法,以及计算奖励和重置环境的方法,一个高质量的广泛采用的机器人控制器,以及一些具有挑战性的示例任务。它为社区提供了一个资源,描述了它的设计选择,并呈现了实验结果。令人惊讶的是,我们发现我们的实现可以实现非常高效的学习,仅需25到50分钟的训练即可获得PCB装配、电缆布线和物体重定位等策略,改进了文献中报告的类似任务的最新结果。这些策略实现了完美或接近完美的成功率,即使在扰动下也具有极强的鲁棒性,并呈现出新兴的恢复和修正行为。我们希望这些有前途的结果和我们的高质量开源实现能为机器人社区提供一个工具,以促进机器人强化学习的进一步发展。
一个基于强化学习优化的大型语言模型,专注于数学问题解决能力的提升。
DeepScaleR-1.5B-Preview 是一个经过强化学习优化的大型语言模型,专注于提升数学问题解决能力。该模型通过分布式强化学习算法,显著提高了在长文本推理场景下的准确率。其主要优点包括高效的训练策略、显著的性能提升以及开源的灵活性。该模型由加州大学伯克利分校的 Sky Computing Lab 和 Berkeley AI Research 团队开发,旨在推动人工智能在教育领域的应用,尤其是在数学教育和竞赛数学领域。模型采用 MIT 开源许可,完全免费供研究人员和开发者使用。
使用AI改善软件工程师的职业发展
AI职业发展助手致力于利用最新的人工智能技术来帮助软件工程师建立更好的职业生涯。我们提供100%免费的AI工具,包括AI职业教练和技能挑战者。AI职业教练是一个基于ChatGPT的教练,可以充当工程经理,为开发人员提供快速、相关且具体的建议,帮助他们实现特定的职业目标。技能挑战者通过全自动生成的多项选择题来评估您的核心开发技能,快速完成挑战并与全球同行进行排名。
构建、管理、扩展和支付来自拉美的顶级远程软件工程团队
TeamStation是一款通过Framework Science独有的远程软件工程团队增员SaaS平台,快速构建拉美近海软件开发团队,集成AI和Fintech技术,提供人性化的AI和Fintech服务,2022年获得了美国专利注册。用户可以通过简单的操作,一键雇佣顶级的近海软件工程师人才。
AI创建软件工程师任务,一致、可读和详细。
Cubed是一个AI创建任务的平台,通过与GitHub代码库连接,使用人工智能生成具体可操作、描述性强的卡片。设置同步后,Cubed会智能地利用代码库的上下文,改进每个新的工单,为开发人员提供更多指导、加速和专注时间。
人类级奖励设计算法,通过编码大型语言模型实现
Eureka是一种人类级奖励设计算法,通过编码大型语言模型实现。它利用最先进的语言模型(如GPT-4)的零样本生成、编写代码和上下文改进能力,对奖励代码进行进化优化。生成的奖励可以用于通过强化学习获得复杂的技能。Eureka生成的奖励函数在29个开源强化学习环境中,包括10种不同的机器人形态,优于人类专家设计的奖励函数。Eureka还能够灵活地改进奖励函数,以提高生成奖励的质量和安全性。通过与课程学习相结合,使用Eureka奖励函数,我们首次展示了一个模拟的Shadow Hand能够进行旋转笔的技巧,熟练地以快速的速度在圆圈中操纵笔。
多目标强化学习框架,文本转图像生成
Parrot 是一种多目标强化学习框架,专为文本转图像生成而设计。它通过批量 Pareto 最优选择的方式,自动识别在 T2I 生成的 RL 优化过程中不同奖励之间的最佳权衡。此外,Parrot采用了 T2I 模型和提示扩展网络的联合优化方法,促进了生成质量感知的文本提示,从而进一步提高了最终图像质量。为了抵消由于提示扩展而可能导致的原始用户提示的潜在灾难性遗忘,我们在推理时引入了原始提示中心化指导,确保生成的图像忠实于用户输入。大量实验和用户研究表明,Parrot在各种质量标准,包括美学、人类偏好、图像情感和文本-图像对齐方面,均优于几种基线方法。
PRIME通过隐式奖励增强在线强化学习,提升语言模型的推理能力。
PRIME是一个开源的在线强化学习解决方案,通过隐式过程奖励来增强语言模型的推理能力。该技术的主要优点在于能够在不依赖显式过程标签的情况下,有效地提供密集的奖励信号,从而加速模型的训练和推理能力的提升。PRIME在数学竞赛基准测试中表现出色,超越了现有的大型语言模型。其背景信息包括由多个研究者共同开发,并在GitHub上发布了相关代码和数据集。PRIME的定位是为需要复杂推理任务的用户提供强大的模型支持。
© 2025 AIbase 备案号:闽ICP备08105208号-14