需求人群:
LLM开发、模型迭代改进
产品特色:
上传数据
对模型进行精调
创建评估
多个提供商连接
浏览量:23
比较各种大型语言模型(LLM)的定价信息
LLM Pricing是一个聚合并比较各种大型语言模型(LLMs)定价信息的网站,这些模型由官方AI提供商和云服务供应商提供。用户可以在这里找到最适合其项目的语言模型定价。
快速直观地进行LLM实验
Terracotta是一个易于使用的平台,通过Terracotta,可以快速高效地进行LLM开发工作流。在Terracotta上管理所有精调模型,通过定性和定量评估快速迭代改进模型。同时支持与OpenAI和Cohere等多个提供商的连接。Terracotta通过上传数据来开展LLM模型的精调工作,提供安全存储数据的功能。用户可以对数据进行分类和文本生成的精调。Terracotta提供了定性和定量评估功能,可以同时输入多个模型的提示并比较模型输出,也可以使用我们的工具在包括准确度、BLEU和混淆矩阵等多种评估指标下评估模型。Terracotta由两位斯坦福大学人工智能研究生Beri Kohen和Lucas Pauker共同创建。欢迎您订阅我们的邮件列表,以便及时了解我们的最新进展!
扩展LLM上下文窗口
LLM Context Extender是一款旨在扩展大型语言模型(LLMs)上下文窗口的工具。它通过调整RoPE的基础频率和缩放注意力logits的方式,帮助LLMs有效适应更大的上下文窗口。该工具在精细调整性能和稳健性方面验证了其方法的优越性,并展示了在仅有100个样本和6个训练步骤的情况下,将LLaMA-2-7B-Chat的上下文窗口扩展到16,384的非凡效率。此外,还探讨了数据组成和训练课程如何影响特定下游任务的上下文窗口扩展,建议以长对话进行LLMs的精细调整作为良好的起点。
让您的模型定制更加个性化
FABRIC 是一个通过迭代反馈来个性化定制扩散模型的工具。它提供了一种简单的方法来根据用户的反馈来改进模型的性能。用户可以通过迭代的方式与模型进行交互,并通过反馈来调整模型的预测结果。FABRIC 还提供了丰富的功能,包括模型训练、参数调整和性能评估。它的定价根据用户的使用情况而定,可满足不同用户的需求。
构建LLM应用的开发平台
LLM Spark是一个开发平台,可用于构建基于LLM的应用程序。它提供多个LLM的快速测试、版本控制、可观察性、协作、多个LLM支持等功能。LLM Spark可轻松构建AI聊天机器人、虚拟助手等智能应用程序,并通过与提供商密钥集成,实现卓越性能。它还提供了GPT驱动的模板,加速了各种AI应用程序的创建,同时支持从零开始定制项目。LLM Spark还支持无缝上传数据集,以增强AI应用程序的功能。通过LLM Spark的全面日志和分析,可以比较GPT结果、迭代和部署智能AI应用程序。它还支持多个模型同时测试,保存提示版本和历史记录,轻松协作,以及基于意义而不仅仅是关键字的强大搜索功能。此外,LLM Spark还支持将外部数据集集成到LLM中,并符合GDPR合规要求,确保数据安全和隐私保护。
基于ComfyUI前端开发的LLM工作流节点集合
ComfyUI LLM Party旨在基于ComfyUI前端开发一套完整的LLM工作流节点集合,使用户能够快速便捷地构建自己的LLM工作流,并轻松地将它们集成到现有的图像工作流中。
高效的 Intel GPU 上的 LLM 推理解决方案
这是一种在 Intel GPU 上实现的高效的 LLM 推理解决方案。通过简化 LLM 解码器层、使用分段 KV 缓存策略和自定义的 Scaled-Dot-Product-Attention 内核,该解决方案在 Intel GPU 上相比标准的 HuggingFace 实现可实现高达 7 倍的令牌延迟降低和 27 倍的吞吐量提升。详细功能、优势、定价和定位等信息请参考官方网站。
macOS原生应用,利用语言模型简化本地文件迭代
Repo Prompt是一个为macOS设计的原生应用,旨在消除在使用本地文件时与最强大语言模型交互的摩擦。它通过允许用户选择文件和文件夹作为提示的上下文,使用保存的提示和仓库映射来指导AI的输出,从而迭代文件或了解它们的工作原理。该产品的主要优点包括提高开发效率、精确控制上下文和审查AI所做的更改。Repo Prompt的背景信息显示,它是一个针对开发者和技术人员的工具,旨在通过集成最新的AI技术来优化代码和文件处理工作流程。产品目前提供免费试用,但具体的定价信息未在页面上提供。
使用简单、原始的 C/CUDA 进行 LLM 训练
karpathy/llm.c 是一个使用简单的 C/CUDA 实现 LLM 训练的项目。它旨在提供一个干净、简单的参考实现,同时也包含了更优化的版本,可以接近 PyTorch 的性能,但代码和依赖大大减少。目前正在开发直接的 CUDA 实现、使用 SIMD 指令优化 CPU 版本以及支持更多现代架构如 Llama2、Gemma 等。
基于用户反馈的 LLM 模型对齐技术
C3PO 是一种基于用户反馈的 LLM 模型对齐技术,可以从单个反馈句子中对 LLM 进行调整,避免过度概括化。该技术提供了参考实现、相关基准线和必要组件,方便研究论文中提出的技术。
一个为LLM生成Git提交信息的插件
llm-commit 是一个为 LLM(Large Language Model)设计的插件,用于生成 Git 提交信息。该插件通过分析 Git 的暂存区差异,利用 LLM 的语言生成能力,自动生成简洁且有意义的提交信息。它不仅提高了开发者的提交效率,还确保了提交信息的质量和一致性。该插件适用于任何使用 Git 和 LLM 的开发环境,免费开源,易于安装和使用。
监控和调试你的LLM模型
Athina AI是一个用于监控和调试LLM(大型语言模型)模型的工具。它可以帮助你发现和修复LLM模型在生产环境中的幻觉和错误,并提供详细的分析和改进建议。Athina AI支持多种LLM模型,可以配置定制化的评估来满足不同的使用场景。你可以通过Athina AI来检测错误的输出、分析成本和准确性、调试模型输出、探索对话内容以及比较不同模型的性能表现等。
开发者首选的LLM应用开发实验和协作平台
Inductor Custom Playgrounds是一个针对开发者设计的平台,旨在通过自动化生成可即时分享的LLM应用开发环境,加速开发过程,缩短上市时间,并创建更有效的LLM应用和功能。该平台支持开发者快速迭代和实验,通过协作和数据驱动的方式,构建高质量的LLM应用程序。
无限令牌,无限制,成本效益高的LLM推理API平台。
Awan LLM是一个提供无限令牌、无限制、成本效益高的LLM(大型语言模型)推理API平台,专为高级用户和开发者设计。它允许用户无限制地发送和接收令牌,直到模型的上下文限制,并且使用LLM模型时没有任何约束或审查。用户只需按月付费,而无需按令牌付费,这大大降低了成本。Awan LLM拥有自己的数据中心和GPU,因此能够提供这种服务。此外,Awan LLM不记录任何提示或生成内容,保护用户隐私。
将GitHub链接转换为适合LLM的格式
GitHub to LLM Converter是一个在线工具,旨在帮助用户将GitHub上的项目、文件或文件夹链接转换成适合大型语言模型(LLM)处理的格式。这一工具对于需要处理大量代码或文档数据的开发者和研究人员来说至关重要,因为它简化了数据准备过程,使得这些数据可以被更高效地用于机器学习或自然语言处理任务。该工具由Skirano开发,提供了一个简洁的用户界面,用户只需输入GitHub链接,即可一键转换,极大地提高了工作效率。
通过Github和Chat GPT进行迭代编码
Git助手是一个通过Github和Chat GPT进行迭代编码的工具。它提供了一个集成的开发环境,让您可以在Github上进行代码编写和版本控制,并通过Chat GPT进行交流和辅助开发。Git助手能够帮助您快速构建代码,并且可以随时展示您的编码过程。它还提供了一个方便的Pull Request链接,可以轻松比较仓库的变化。Git助手让您能够更高效地使用Chat GPT,并使开发过程更加流畅。
简化LLM和RAG模型输出评估,提供对定性指标的洞察
Algomax简化LLM和RAG模型的评估,优化提示开发,并通过直观的仪表板提供对定性指标的独特洞察。我们的评估引擎精确评估LLM,并通过广泛测试确保可靠性。平台提供了全面的定性和定量指标,帮助您更好地理解模型的行为,并提供具体的改进建议。Algomax的用途广泛,适用于各个行业和领域。
100% Java实现的LLM代理和大型行动模型
Tools4AI是100%用Java实现的大型行动模型(LAM),可作为企业Java应用程序的LLM代理。该项目演示了如何将AI与企业工具或外部工具集成,将自然语言提示转换为可执行行为。这些提示可以被称为"行动提示"或"可执行提示"。通过利用AI能力,它简化了用户与复杂系统的交互,提高了生产力和创新能力。
通过LLM增强语义对齐的扩散模型适配器
ELLA(Efficient Large Language Model Adapter)是一种轻量级方法,可将现有的基于CLIP的扩散模型配备强大的LLM。ELLA提高了模型的提示跟随能力,使文本到图像模型能够理解长文本。我们设计了一个时间感知语义连接器,从预训练的LLM中提取各种去噪阶段的时间步骤相关条件。我们的TSC动态地适应了不同采样时间步的语义特征,有助于在不同的语义层次上对U-Net进行冻结。ELLA在DPG-Bench等基准测试中表现优越,尤其在涉及多个对象组合、不同属性和关系的密集提示方面表现出色。
高效的大型语言模型(LLM)研究代码库
Meta Lingua 是一个轻量级、高效的大型语言模型(LLM)训练和推理库,专为研究而设计。它使用了易于修改的PyTorch组件,使得研究人员可以尝试新的架构、损失函数和数据集。该库旨在实现端到端的训练、推理和评估,并提供工具以更好地理解模型的速度和稳定性。尽管Meta Lingua目前仍在开发中,但已经提供了多个示例应用来展示如何使用这个代码库。
3D可视化的GPT-style LLM
LLM Visualization项目显示了一个GPT-style网络的3D模型。也就是OpenAI的GPT-2、GPT-3(可能还有GPT-4)中使用的网络拓扑。第一个显示工作权重的网络是一个小型网络,对由字母A、B和C组成的小列表进行排序。这是Andrej Karpathy的minGPT实现中的演示示例模型。渲染器还支持可视化任意大小的网络,并且与较小的gpt2大小一起工作,尽管权重没有被下载(它有数百MB)。CPU Simulation项目运行2D原理数字电路,具有完整的编辑器。意图是添加一些演练,展示诸如:如何构建一个简单的RISC-V CPU;构成部分下至门级:指令解码、ALU、加法等;更高级的CPU思想,如各种级别的流水线、缓存等。
一站式LLM模型比较与优化平台
Unify AI是一个为开发者设计的平台,它允许用户通过一个统一的API访问和比较来自不同提供商的大型语言模型(LLMs)。该平台提供了实时性能基准测试,帮助用户根据质量、速度和成本效率来选择和优化最合适的模型。Unify AI还提供了定制路由功能,允许用户根据自己的需求设置成本、延迟和输出速度的约束,并定义自定义质量指标。此外,Unify AI的系统会根据最新的基准数据,每10分钟更新一次,将查询发送到最快提供商,确保持续达到峰值性能。
一个关于大型语言模型(LLM)后训练方法的教程、调查和指南资源库。
Awesome-LLM-Post-training 是一个专注于大型语言模型(LLM)后训练方法的资源库。它提供了关于 LLM 后训练的深入研究,包括教程、调查和指南。该资源库基于论文《LLM Post-Training: A Deep Dive into Reasoning Large Language Models》,旨在帮助研究人员和开发者更好地理解和应用 LLM 后训练技术。该资源库免费开放,适合学术研究和工业应用。
Stability AI 生成模型是一个开源的生成模型库。
Stability AI 生成模型是一个开源的生成模型库,提供了各种生成模型的训练、推理和应用功能。该库支持各种生成模型的训练,包括基于 PyTorch Lightning 的训练,提供了丰富的配置选项和模块化的设计。用户可以使用该库进行生成模型的训练,并通过提供的模型进行推理和应用。该库还提供了示例训练配置和数据处理的功能,方便用户进行快速上手和定制。
设计、部署和优化LLM应用与Klu
Klu是一款全能的LLM应用平台,可以在Klu上快速构建、评估和优化基于LLM技术的应用。它提供了多种最先进的LLM模型选择,让用户可以根据自己的需求进行选择和调整。Klu还支持团队协作、版本管理、数据评估等功能,为AI团队提供了一个全面而便捷的开发平台。
官方实现的自纠正LLM控制的扩散模型
SLD是一个自纠正的LLM控制的扩散模型框架,它通过集成检测器增强生成模型,以实现精确的文本到图像对齐。SLD框架支持图像生成和精细编辑,并且与任何图像生成器兼容,如DALL-E 3,无需额外训练或数据。
一个基于LLM的创意命名工具,帮助用户快速生成独特的名称。
LLM Codenames 是一个基于语言模型的创意命名工具。它利用先进的自然语言处理技术,能够根据用户输入的关键词或主题,快速生成一系列独特且富有创意的名称。这种工具对于需要进行品牌命名、产品命名或创意写作的用户来说非常实用。它可以帮助用户节省大量时间和精力,避免命名过程中的重复劳动。LLM Codenames 的主要优点是其高效性和创意性,能够提供多样化的命名选择,满足不同用户的需求。该工具目前以网站形式提供服务,用户可以通过浏览器直接访问使用,无需安装任何软件。
© 2025 AIbase 备案号:闽ICP备08105208号-14