浏览量:13
最新流量情况
月访问量
205.62k
平均访问时长
00:00:33
每次访问页数
1.80
跳出率
40.98%
流量来源
直接访问
29.89%
自然搜索
59.86%
邮件
0.10%
外链引荐
6.96%
社交媒体
2.66%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
德国
3.44%
印度
3.72%
韩国
3.73%
俄罗斯
4.25%
美国
13.46%
设计、部署和优化LLM应用与Klu
Klu是一款全能的LLM应用平台,可以在Klu上快速构建、评估和优化基于LLM技术的应用。它提供了多种最先进的LLM模型选择,让用户可以根据自己的需求进行选择和调整。Klu还支持团队协作、版本管理、数据评估等功能,为AI团队提供了一个全面而便捷的开发平台。
LLM App开发和运营平台
Teammate Lang是一个全能的LLM App开发和运营解决方案。提供无代码编辑器、语义缓存、Prompt版本管理、LLM数据平台、A/B测试、QA、Playground等20多个模型,包括GPT、PaLM、Llama、Cohere等。
一个可以本地与多个PDF文件进行对话的聊天机器人。
rag-chatbot是一个基于人工智能技术的聊天机器人模型,它能够让用户通过自然语言与多个PDF文件进行交互。该模型使用了最新的机器学习技术,如Huggingface和Ollama,来实现对PDF内容的理解和回答生成。它的重要性在于能够处理大量文档信息,为用户提供快速、准确的问答服务。产品背景信息表明,这是一个开源项目,旨在通过技术创新提升文档处理的效率。目前该项目是免费的,主要面向开发者和技术爱好者。
构建LLM应用的框架
LlamaIndex.TS是一个为构建基于大型语言模型(LLM)的应用而设计的框架。它专注于帮助用户摄取、结构化和访问私有或特定领域的数据。这个框架提供了一个自然语言界面,用于连接人类和推断出的数据,使得开发者无需成为机器学习或自然语言处理的专家,也能通过LLM增强其软件功能。LlamaIndex.TS支持Node.js、Vercel Edge Functions和Deno等流行运行时环境。
基于ComfyUI前端开发的LLM工作流节点集合
ComfyUI LLM Party旨在基于ComfyUI前端开发一套完整的LLM工作流节点集合,使用户能够快速便捷地构建自己的LLM工作流,并轻松地将它们集成到现有的图像工作流中。
终端中的个人AI助手,具备本地工具。
gptme是一个运行在终端的个人AI助手,它装备了本地工具,可以编写代码、使用终端、浏览网页、视觉识别等。它是一个不受软件、互联网访问、超时或隐私问题限制的ChatGPT“代码解释器”的本地替代方案。
一个简单而强大的Python库,用于使用大型语言模型(LLMs)。
promptic是一个轻量级、基于装饰器的Python库,它通过litellm简化了与大型语言模型(LLMs)交互的过程。使用promptic,你可以轻松创建提示,处理输入参数,并从LLMs接收结构化输出,仅需几行代码。
无需编码即可构建生产就绪的LLM应用程序
Epsilla是一个无需编码的RAG即服务(RAG-as-a-Service)平台,它允许用户基于私有或公共数据构建生产就绪的大型语言模型(Large Language Model, LLM)应用程序。该平台提供了一站式服务,包括数据管理、RAG工具、CI/CD风格的评估以及企业级安全措施,旨在降低总拥有成本(TCO),提高查询速度和吞吐量,同时确保信息的时效性和安全性。
为LLM聊天机器人提供强大灵活的长期记忆系统。
MemoryScope是一个为大型语言模型(LLM)聊天机器人提供长期记忆能力的框架。它通过记忆数据库和工作库,使得聊天机器人能够存储和检索记忆片段,从而实现个性化的用户交互体验。该产品通过记忆检索和记忆整合等操作,使得机器人能够理解并记住用户的习惯和偏好,为用户提供更加个性化和连贯的对话体验。MemoryScope支持多种模型API,包括openai和dashscope,并且可以与现有的代理框架如AutoGen和AgentScope结合使用,提供了丰富的定制化和扩展性。
AI提示工程师,优化大型语言模型应用
Weavel是一个AI提示工程师,它通过追踪、数据集管理、批量测试和评估等功能,帮助用户优化大型语言模型(LLM)的应用。Weavel与Weavel SDK结合使用,能够自动记录并添加LLM生成的数据到您的数据集中,实现无缝集成和针对特定用例的持续改进。此外,Weavel能够自动生成评估代码,并使用LLM作为复杂任务的公正裁判,简化评估流程,确保准确、细致的性能指标。
企业级AI服务平台,提供大模型应用开发与部署
无问芯穹是一个面向企业级用户的AI服务平台,专注于提供大模型应用开发与部署的解决方案。它支持多种模型和芯片,提供端到端的服务体验,包括模型微调、模型服务、开发机、任务、推理服务等。无问芯穹致力于帮助开发者和企业快速构建和部署AI应用,提高开发效率,降低技术门槛。
未来派的AI驱动网页爬虫工具。
CyberScraper 2077是一款基于AI的网页爬虫工具,它利用OpenAI和Ollama等大型语言模型(LLM)来智能解析网页内容,提供数据提取服务。这款工具不仅拥有用户友好的图形界面,还支持多种数据导出格式,包括JSON、CSV、HTML、SQL和Excel。此外,它还具备隐形模式,以降低被检测为机器人的风险,以及遵循robots.txt和网站政策的道德爬取特性。
革命性的检索增强生成系统技术集合。
RAG_Techniques 是一个专注于检索增强生成(Retrieval-Augmented Generation, RAG)系统的技术集合,旨在提升系统的准确性、效率和上下文丰富性。它提供了一个前沿技术的中心,通过社区贡献和协作环境,推动RAG技术的发展和创新。
一站式数据处理系统,为大型语言模型提供高质量数据。
Data-Juicer 是一个一站式的多模态数据处理系统,旨在为大型语言模型(LLMs)提供更高质量、更丰富、更易消化的数据。它提供了一个系统化和可复用的数据处理库,支持数据与模型的协同开发,通过沙盒实验室实现快速迭代,并提供基于数据和模型的反馈循环、可视化和多维度自动评估等功能,帮助用户更好地理解和改进他们的数据和模型。Data-Juicer 正在积极更新和维护,定期增强和添加更多功能、数据配方和数据集。
开源版Anthropic的Claude Artifacts界面
AI Artifacts是一个开源的Anthropic Claude Artifacts界面版本,使用E2B的代码解释器SDK和核心SDK执行AI代码。E2B提供了一个云沙箱来安全地运行AI生成的代码,并可以处理安装库、运行shell命令、运行Python、JavaScript、R以及Nextjs应用程序等。
自然语言编程,快速构建AI应用
Wordware是一个集成了自然语言编程(NLP)的在线开发环境,它允许用户通过自然语言指令来开发、迭代和部署AI代理。Wordware结合了软件的最佳特性和自然语言的强大能力,摆脱了传统无代码工具的限制,使得每个团队成员都能独立地进行迭代。它提供了一个类似Notion的界面,简单灵活,支持团队协作、管理提示(prompts)和工作流程。Wordware还具备高级技术能力,如循环、分支、结构化生成、版本控制和类型安全,同时支持自定义代码执行,连接到任何API。此外,Wordware支持多种大型语言模型(LLM)提供商,一键切换,优化工作流程。
新一代AI工程师在GitHub上构建
GitHub Models是GitHub推出的新一代AI模型服务,旨在帮助开发者成为AI工程师。它将行业领先的大型和小型语言模型直接集成到GitHub平台,让超过1亿用户能够直接在GitHub上访问和使用这些模型。GitHub Models提供了一个交互式的模型游乐场,用户可以在这里测试不同的提示和模型参数,无需支付费用。此外,GitHub Models与Codespaces和VS Code集成,允许开发者在开发环境中无缝使用这些模型,并通过Azure AI实现生产部署,提供企业级安全和数据隐私保护。
通过GPT等大型语言模型与你的文档对话
IncarnaMind是一个开源项目,旨在通过大型语言模型(LLMs)如GPT、Claude和本地开源LLMs,实现与个人文档(PDF、TXT)的交互对话。该项目利用滑动窗口分块机制和集成检索器,提高查询效率,增强LLMs的准确性。它支持多文档对话问答,突破了单文档限制,并兼容多种文件格式和LLM模型。
AI代理工具集,赋能复杂任务处理。
Composio是一个为AI代理提供高质量工具和集成的平台,它简化了代理的认证、准确性和可靠性问题,使得开发者能够通过一行代码集成多种工具和框架。它支持100多种工具,覆盖了GitHub、Notion、Linear等90多个平台,提供了包括软件操作、操作系统交互、浏览器功能、搜索、软件开发环境(SWE)以及即席代理数据(RAG)等多种功能。Composio还支持六种不同的认证协议,能够显著提高代理调用工具的准确性。此外,Composio可以作为后端服务嵌入到应用程序中,为所有用户和代理管理认证和集成,保持一致的体验。
节省LLM成本,不牺牲质量的框架
RouteLLM是一个用于服务和评估大型语言模型(LLM)路由器的框架。它通过智能路由查询到不同成本和性能的模型,以节省成本同时保持响应质量。它提供了开箱即用的路由器,并在广泛使用的基准测试中显示出高达85%的成本降低和95%的GPT-4性能。
无限令牌,无限制,成本效益高的LLM推理API平台。
Awan LLM是一个提供无限令牌、无限制、成本效益高的LLM(大型语言模型)推理API平台,专为高级用户和开发者设计。它允许用户无限制地发送和接收令牌,直到模型的上下文限制,并且使用LLM模型时没有任何约束或审查。用户只需按月付费,而无需按令牌付费,这大大降低了成本。Awan LLM拥有自己的数据中心和GPU,因此能够提供这种服务。此外,Awan LLM不记录任何提示或生成内容,保护用户隐私。
构建大型语言模型支持的多智能体应用。
AgentScope是一个创新的多智能体平台,旨在赋能开发者使用大规模模型构建多智能体应用。它具有易于使用、高鲁棒性和基于Actor的分布式特性,支持自定义容错控制和重试机制,以增强应用稳定性。
AI驱动的相册,自动生成图像元数据并与之对话。
Album AI是一个实验性项目,它使用gpt-4o-mini作为视觉模型,自动识别相册中图像文件的元数据,并利用RAG技术实现与相册的对话。它既可以作为传统相册使用,也可以作为图像知识库,辅助大型语言模型进行内容生成。
AI应用开发加速器
Anthropic Console是一个为AI应用开发提供支持的平台,它通过内置的提示生成器,测试案例生成器和模型响应评估工具,帮助开发者快速生成高质量的提示,测试和优化AI模型的响应。该平台利用Claude 3.5 Sonnet模型,简化了开发流程,提高了AI应用的产出质量。
快速易用的LLM推理和服务平台
vLLM是一个为大型语言模型(LLM)推理和提供服务的快速、易用且高效的库。它通过使用最新的服务吞吐量技术、高效的内存管理、连续批处理请求、CUDA/HIP图快速模型执行、量化技术、优化的CUDA内核等,提供了高性能的推理服务。vLLM支持与流行的HuggingFace模型无缝集成,支持多种解码算法,包括并行采样、束搜索等,支持张量并行性,适用于分布式推理,支持流式输出,并兼容OpenAI API服务器。此外,vLLM还支持NVIDIA和AMD GPU,以及实验性的前缀缓存和多lora支持。
低代码构建多Agent大模型应用的开发工具
LazyLLM是一个致力于简化人工智能应用构建流程的开发工具,它通过提供低代码的解决方案,使得开发者即使不了解大模型也能轻松组装包含多个Agent的AI应用。LazyLLM支持一键部署所有模块,跨平台兼容,自动进行网格搜索参数优化,以及高效的模型微调,从而提升应用效果。
集成大型语言模型的SDK
Semantic Kernel是一个集成了大型语言模型(LLMs)如OpenAI、Azure OpenAI和Hugging Face的软件开发工具包(SDK),它允许开发者通过定义可串联的插件,在几行代码内实现与AI的交互。其特色在于能够自动编排AI插件,使用户能够通过LLM生成实现特定目标的计划,并由Semantic Kernel执行该计划。
RAG-based LLM agents的Elo排名工具
RAGElo是一个工具集,使用Elo评分系统帮助选择最佳的基于检索增强生成(RAG)的大型语言模型(LLM)代理。随着生成性LLM在生产中的原型设计和整合变得更加容易,评估仍然是解决方案中最具有挑战性的部分。RAGElo通过比较不同RAG管道和提示对多个问题的答案,计算不同设置的排名,提供了一个良好的概览,了解哪些设置有效,哪些无效。
© 2024 AIbase 备案号:闽ICP备08105208号-14