浏览量:65
最新流量情况
月访问量
301.44k
平均访问时长
00:00:52
每次访问页数
1.77
跳出率
57.73%
流量来源
直接访问
36.57%
自然搜索
51.58%
邮件
0.08%
外链引荐
7.81%
社交媒体
3.54%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
4.81%
中国
3.97%
英国
5.85%
印度
6.16%
美国
26.66%
开发LLM应用的平台
Vellum是一个用于构建LLM驱动应用的开发平台。它具有提示工程、语义搜索、版本控制、测试和监控等工具,可以帮助开发者将LLM的功能引入生产环境。它与所有主要的LLM提供商兼容,开发者可以选择最适合的模型,也可以随时切换,避免业务过于依赖单一的LLM提供商。
开发平台,构建 LLM 应用
Vellum 是一个开发平台,用于构建 LLM 应用。它提供了快速工程、语义搜索、版本控制、测试和监控等工具,兼容所有主要的 LLM 提供商。Vellum 可以帮助您将 LLM 功能带入生产环境,支持迅速开发和部署 LLM 模型,同时提供质量测试和性能监控等功能。定价和定位请参考官方网站。
构建LLM应用的开发平台
LLM Spark是一个开发平台,可用于构建基于LLM的应用程序。它提供多个LLM的快速测试、版本控制、可观察性、协作、多个LLM支持等功能。LLM Spark可轻松构建AI聊天机器人、虚拟助手等智能应用程序,并通过与提供商密钥集成,实现卓越性能。它还提供了GPT驱动的模板,加速了各种AI应用程序的创建,同时支持从零开始定制项目。LLM Spark还支持无缝上传数据集,以增强AI应用程序的功能。通过LLM Spark的全面日志和分析,可以比较GPT结果、迭代和部署智能AI应用程序。它还支持多个模型同时测试,保存提示版本和历史记录,轻松协作,以及基于意义而不仅仅是关键字的强大搜索功能。此外,LLM Spark还支持将外部数据集集成到LLM中,并符合GDPR合规要求,确保数据安全和隐私保护。
W&B Prompts: 高效生产级 LLM 操作
W&B Prompts 是 W&B 的最新产品,专注于 LLM(Language Model)技术。它提供了生产级的 LLM 操作,帮助用户解锁更好的 LLM 性能和提示工程。W&B Prompts 提供强大的功能和优势,定价灵活,适用于各种应用场景。
使用AI技术提供的Monorepo工具包,帮助快速构建应用程序。
MonoKit是一个AI驱动的monorepo工具包,提供了Next.js Turborepo起始套件,深度整合MCP服务器,以及适用于LLM的模板。它有助于加快应用程序的构建速度,并提供优化的代码结构,帮助AI代理更好地理解项目上下文,从而提供更准确的代码建议。
mutatio是一个AI提示工程平台,帮助AI工程师系统测试,衡量和优化提示。
mutatio是一个现代LLM提示实验平台,可帮助用户Craft,refine和optimize他们的AI提示。它允许用户创建和测试各种提示变异,以提高AI的输出质量。
Promptaa是一个AI提示库,可帮助您创建、管理和共享AI提示。
Promptaa是一个用于创建、管理和共享AI提示的平台。它利用AI增强功能改进提示,提供了创建有效提示的指南,以及社区功能让用户分享和发现最佳提示。
智元机器人发布的具身智能一站式开发平台,覆盖数据采集到模型推理全链路
Genie Studio 是智元机器人专为具身智能场景打造的一站式开发平台,具备数据采集、模型训练、仿真评测、模型推理的全链路产品能力。它为开发者提供从‘采’到‘训’到‘测’再到‘推’的标准化解决方案,极大地降低了开发门槛,提升了开发效率。该平台通过高效的数据采集、灵活的模型训练、精准的仿真评测和无缝的模型推理,推动了具身智能技术的快速发展和应用。Genie Studio 不仅提供了强大的工具,还为具身智能的规模化落地提供了支持,加速了行业向标准化、平台化、量产化的新阶段跃进。
新一代 AI 大模型智能体开发平台,快速搭建个性化智能体。
扣子是一个 AI 智能体开发平台,整合了丰富的能力如插件、长短期记忆、工作流等,旨在帮助用户快速构建和发布商业价值的智能体。其开放性和灵活性使得各行业用户都能找到合适的解决方案,适合个人和企业的不同需求。
mcp-use 是与 MCP 工具交互的最简单方式,支持自定义代理。
mcp-use 是一个开源的 MCP 客户端库,旨在帮助开发者将任何大型语言模型(LLM)连接到 MCP 工具,构建具有工具访问能力的自定义代理,而无需使用闭源或应用程序客户端。该产品提供了简单易用的 API 和强大的功能,可以应用于多个领域。
通过与LLM对话构建持久知识,存于本地Markdown文件
Basic Memory是一款知识管理系统,借助与LLM的自然对话构建持久知识,并保存于本地Markdown文件。它解决了多数LLM互动短暂、知识难留存的问题。其优点包括本地优先、双向读写、结构简单、可形成知识图谱、兼容现有编辑器、基础设施轻量。定位为帮助用户打造个人知识库,采用AGPL - 3.0许可证,无明确价格信息。
一个轻量级且强大的多智能体工作流框架
OpenAI Agents SDK是一个用于构建多智能体工作流的框架。它允许开发者通过配置指令、工具、安全机制和智能体之间的交接来创建复杂的自动化流程。该框架支持与任何符合OpenAI Chat Completions API格式的模型集成,具有高度的灵活性和可扩展性。它主要用于编程场景中,帮助开发者快速构建和优化智能体驱动的应用程序。
一个关于大型语言模型(LLM)后训练方法的教程、调查和指南资源库。
Awesome-LLM-Post-training 是一个专注于大型语言模型(LLM)后训练方法的资源库。它提供了关于 LLM 后训练的深入研究,包括教程、调查和指南。该资源库基于论文《LLM Post-Training: A Deep Dive into Reasoning Large Language Models》,旨在帮助研究人员和开发者更好地理解和应用 LLM 后训练技术。该资源库免费开放,适合学术研究和工业应用。
一个用于从文本和图像中提取结构化数据的代理API,基于LLMs实现。
l1m是一个强大的工具,它通过代理的方式利用大型语言模型(LLMs)从非结构化的文本或图像中提取结构化的数据。这种技术的重要性在于它能够将复杂的信息转化为易于处理的格式,从而提高数据处理的效率和准确性。l1m的主要优点包括无需复杂的提示工程、支持多种LLM模型以及内置缓存功能等。它由Inferable公司开发,旨在为用户提供一个简单、高效且灵活的数据提取解决方案。l1m提供免费试用,适合需要从大量非结构化数据中提取有价值信息的企业和开发者。
为LLM训练和推理生成网站整合文本文件的工具
LLMs.txt生成器是一个由Firecrawl提供支持的在线工具,旨在帮助用户从网站生成用于LLM训练和推理的整合文本文件。它通过整合网页内容,为训练大型语言模型提供高质量的文本数据,从而提高模型的性能和准确性。该工具的主要优点是操作简单、高效,能够快速生成所需的文本文件。它主要面向需要大量文本数据进行模型训练的开发者和研究人员,为他们提供了一种便捷的解决方案。
基于LLM的文章翻译工具,自动翻译并创建多语言Markdown文件。
hugo-translator是一个基于大型语言模型(LLM)驱动的文章翻译工具。它能够自动将文章从一种语言翻译为另一种语言,并生成新的Markdown文件。该工具支持OpenAI和DeepSeek的模型,用户可以通过简单的配置和命令快速完成翻译任务。它主要面向使用Hugo静态网站生成器的用户,帮助他们快速实现多语言内容的生成和管理。产品目前免费开源,旨在提高内容创作者的效率,降低多语言内容发布的门槛。
基于LLM的代理框架,用于在代码库中执行大规模代码迁移。
Aviator Agents 是一款专注于代码迁移的编程工具。它通过集成LLM技术,能够直接与GitHub连接,支持多种模型,如Open-AI o1、Claude Sonnet 3.5、Llama 3.1和DeepSeek R1。该工具可以自动执行代码迁移任务,包括搜索代码依赖、优化代码、生成PR等,极大提高了代码迁移的效率和准确性。它主要面向开发团队,帮助他们高效完成代码迁移工作,节省时间和精力。
一个为LLM生成Git提交信息的插件
llm-commit 是一个为 LLM(Large Language Model)设计的插件,用于生成 Git 提交信息。该插件通过分析 Git 的暂存区差异,利用 LLM 的语言生成能力,自动生成简洁且有意义的提交信息。它不仅提高了开发者的提交效率,还确保了提交信息的质量和一致性。该插件适用于任何使用 Git 和 LLM 的开发环境,免费开源,易于安装和使用。
一个用于LLM预训练的高效网络爬虫工具,专注于高效爬取高质量网页数据。
Crawl4LLM是一个开源的网络爬虫项目,旨在为大型语言模型(LLM)的预训练提供高效的数据爬取解决方案。它通过智能选择和爬取网页数据,帮助研究人员和开发者获取高质量的训练语料。该工具支持多种文档评分方法,能够根据配置灵活调整爬取策略,以满足不同的预训练需求。项目基于Python开发,具有良好的扩展性和易用性,适合在学术研究和工业应用中使用。
一个用于比较大型语言模型在总结短文档时产生幻觉的排行榜。
该产品是一个由Vectara开发的开源项目,用于评估大型语言模型(LLM)在总结短文档时的幻觉产生率。它使用了Vectara的Hughes幻觉评估模型(HHEM-2.1),通过检测模型输出中的幻觉来计算排名。该工具对于研究和开发更可靠的LLM具有重要意义,能够帮助开发者了解和改进模型的准确性。
VisionAgent是一个用于生成代码以解决视觉任务的库,支持多种LLM提供商。
VisionAgent是一个强大的工具,它利用人工智能和大语言模型(LLM)来生成代码,帮助用户快速解决视觉任务。该工具的主要优点是能够自动将复杂的视觉任务转化为可执行的代码,极大地提高了开发效率。VisionAgent支持多种LLM提供商,用户可以根据自己的需求选择不同的模型。它适用于需要快速开发视觉应用的开发者和企业,能够帮助他们在短时间内实现功能强大的视觉解决方案。VisionAgent目前是免费的,旨在为用户提供高效、便捷的视觉任务处理能力。
OmniParser V2 是一种将任何 LLM 转化为计算机使用代理的技术。
OmniParser V2 是微软研究团队开发的一种先进的人工智能模型,旨在将大型语言模型(LLM)转化为能够理解和操作图形用户界面(GUI)的智能代理。该技术通过将界面截图从像素空间转换为可解释的结构化元素,使 LLM 能够更准确地识别可交互图标,并在屏幕上执行预定动作。OmniParser V2 在检测小图标和快速推理方面取得了显著进步,其结合 GPT-4o 在 ScreenSpot Pro 基准测试中达到了 39.6% 的平均准确率,远超原始模型的 0.8%。此外,OmniParser V2 还提供了 OmniTool 工具,支持与多种 LLM 结合使用,进一步推动了 GUI 自动化的发展。
非结构化数据处理平台,助力企业快速构建行业数据集并集成到LLM RAG知识库
Supametas.AI是一款专注于非结构化数据处理的平台,旨在帮助企业快速将音频、视频、图片、文本等多种格式的数据转化为适用于LLM RAG知识库的结构化数据。该平台通过提供多种数据采集方式和强大的预处理功能,极大地简化了数据处理流程,降低了企业构建行业数据集的门槛。其无缝集成到LLM RAG知识库的能力,使得企业能够更高效地利用数据驱动业务发展。Supametas.AI的定位是成为行业领先的LLM数据结构化处理开发平台,满足企业在数据隐私和灵活性方面的需求。
基于LLM和LangChain的全栈应用,用于检索股票数据和新闻
该产品是一个全栈应用,通过LLM(大型语言模型)和LangChain技术,结合LangGraph实现股票数据和新闻的检索与分析。它利用ChromaDB作为向量数据库,支持语义搜索和数据可视化,为用户提供股票市场的深入洞察。该产品主要面向投资者、金融分析师和数据科学家,帮助他们快速获取和分析股票相关信息,辅助决策。产品目前开源免费,适合需要高效处理金融数据和新闻的用户。
一个基于AI的深度研究工具,能够持续搜索信息直至满足用户查询需求。
OpenDeepResearcher 是一个基于 AI 的研究工具,通过结合 SERPAPI、Jina 和 OpenRouter 等服务,能够根据用户输入的查询主题,自动进行多轮迭代搜索,直至收集到足够的信息并生成最终报告。该工具的核心优势在于其高效的异步处理能力、去重功能以及强大的 LLM 决策支持,能够显著提升研究效率。它主要面向需要进行大量文献搜索和信息整理的科研人员、学生以及相关领域的专业人士,帮助他们快速获取高质量的研究资料。该工具目前以开源形式提供,用户可以根据需要自行部署和使用。
一个针对AI工程师的趣味游戏,通过提示挑战激发创造力。
Secret Prompter 是一款专为AI工程师设计的趣味游戏,灵感来源于Wordle。玩家需要通过有限的尝试次数,提交最佳的提示(prompt),以获得最高的准确率。游戏每天更新,玩家的排名会根据准确率和提交时间进行排序。该产品不仅具有娱乐性,还能锻炼AI工程师的提示工程能力,帮助他们更好地理解和优化AI模型的输入。产品目前免费开放,适合对AI感兴趣的技术人员和爱好者。
一个由LLM驱动的数据处理系统。
DocETL是一个强大的系统,用于处理和分析大量文本数据。它通过利用大型语言模型(LLM)的能力,能够自动优化数据处理流程,并将LLM与非LLM操作无缝集成。该系统的主要优点包括其声明式的YAML定义方式,使得用户可以轻松地定义复杂的数据处理流程。此外,DocETL还提供了一个交互式的playground,方便用户进行提示工程的实验。产品背景信息显示,DocETL在2024年12月推出了DocWrangler,这是一个新的交互式playground,旨在简化提示工程。价格方面,虽然没有明确标出,但从提供的使用案例来看,运行和优化数据处理流程的成本相对较低。产品定位主要是为需要处理大量文本数据并从中提取有价值信息的用户提供服务。
© 2025 AIbase 备案号:闽ICP备08105208号-14