需求人群:
"ChainForge可以用于对大型语言模型进行评估和调试,特别是针对提示工程场景。它为开发人员提供了一种简单高效的方式来验证模型输出的质量和稳健性。"
使用场景示例:
测试提示注入攻击对模型输出的影响
验证给定提示在不同模型和设置下的输出差异
通过批量测试不同提示来优化提示模板
产品特色:
测试提示注入攻击的稳健性
测试响应格式的一致性
发送大量参数化提示并导出到Excel文件
验证同一模型不同设置的响应质量
测量不同系统消息对ChatGPT输出的影响
运行OpenAI评估生成的示例评估
浏览量:70
最新流量情况
月访问量
3615
平均访问时长
00:00:39
每次访问页数
1.71
跳出率
48.81%
流量来源
直接访问
52.84%
自然搜索
14.77%
邮件
13.68%
外链引荐
3.00%
社交媒体
15.33%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
8.55%
德国
7.28%
英国
50.55%
日本
1.04%
美国
32.59%
用于提示工程的开源可视化编程环境
ChainForge是一款开源的可视化编程环境,专注于提示工程。它可以让你评估提示和文本生成模型的稳健性,超越了简单的案例证据。我们认为,提示多个大型语言模型、比较它们的响应并测试关于它们的假设,应该不仅容易,而且有趣。ChainForge提供了一套工具,以最小的努力评估和可视化提示(和模型)的质量。换句话说,它旨在让大型语言模型的评估变得简单。ChainForge开箱即用地支持测试提示注入攻击的稳健性、测试响应格式的一致性、发送大量参数化提示并导出到Excel文件、验证同一模型不同设置的响应质量、测量不同系统消息对ChatGPT输出的影响等。
统一的语言模型评估框架
PromptBench是一个基于Pytorch的Python包,用于评估大型语言模型(LLM)。它为研究人员提供了用户友好的API,以便对LLM进行评估。主要功能包括:快速模型性能评估、提示工程、对抗提示评估以及动态评估等。优势是使用简单,可以快速上手评估已有数据集和模型,也可以轻松定制自己的数据集和模型。定位为LLM评估的统一开源库。
Qwen2.5-Coder系列的1.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、代码推理和代码修复而设计。基于强大的Qwen2.5,通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此模型是1.5B参数的指令调优版本,采用GGUF格式,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
简单易用,释放AI的强大力量
5ire是一个以简洁和用户友好为核心的AI产品,旨在让即使是初学者也能轻松利用大型语言模型。它支持多种文档格式的解析和向量化,具备本地知识库、使用分析、提示库、书签和快速关键词搜索等功能。作为一个开源项目,5ire提供免费下载,并且提供了按需付费的大型语言模型API服务。
AI模型选择助手
Lumigator 是 Mozilla.ai 开发的一款产品,旨在帮助开发者从众多大型语言模型(LLM)中选择最适合其特定项目的模型。它通过提供任务特定的指标框架来评估模型,确保所选模型能够满足项目需求。Lumigator 的愿景是成为一个开源平台,促进道德和透明的AI开发,并填补行业工具链中的空白。
前沿级多模态大型语言模型
NVLM 1.0是NVIDIA ADLR推出的前沿级多模态大型语言模型系列,它在视觉-语言任务上达到了业界领先水平,与顶级专有模型和开放访问模型相媲美。该模型在多模态训练后,甚至在纯文本任务上的准确性上也有所提高。NVLM 1.0的开源模型权重和Megatron-Core训练代码为社区提供了宝贵的资源。
前沿级多模态大型语言模型,实现视觉-语言任务的先进性能。
NVLM 1.0是一系列前沿级的多模态大型语言模型(LLMs),在视觉-语言任务上取得了与领先专有模型和开放访问模型相媲美的先进成果。值得注意的是,NVLM 1.0在多模态训练后,其文本性能甚至超过了其LLM主干模型。我们为社区开源了模型权重和代码。
开源大型语言模型工具集合
Open Source LLM Tools是一个专注于收集和展示开源大型语言模型(LLM)工具的平台。它提供了一个更新频繁的资源库,帮助开发者和研究者发现和利用最新的开源AI工具。该平台的主要优点在于其高更新频率和对活跃开源AI开发者的聚焦,使得用户能够及时获取到行业的最新动态和技术进展。
世界顶尖的开源大型语言模型
Reflection Llama-3.1 70B 是目前世界上顶尖的开源大型语言模型(LLM),采用名为 Reflection-Tuning 的新技术进行训练,使模型能够检测其推理中的错误并进行修正。该模型在合成数据上进行了训练,这些数据由 Glaive 生成。对于正在训练模型的用户来说,Glaive 是一个非常出色的工具。该模型使用标准的 Llama 3.1 聊天格式,通过特殊的标签来区分模型的内部思考和最终答案,从而提升用户体验。
高效开源的大型语言模型
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
基于大型语言模型的高性能MacOS聊天应用
ChatMLX是一款现代、开源、高性能的MacOS聊天应用程序,基于大型语言模型构建。它利用MLX的强大性能和苹果硅芯片,支持多种模型,为用户提供丰富的对话选择。ChatMLX在本地运行大型语言模型,以确保用户隐私和安全。
AI提示工程师,提升AI交互效率。
Ape是一个开源的AI提示工程师,由Weavel公司开发,旨在通过优化AI的交互方式来提升效率。它是一个专门为AI设计的提示工程库,支持自定义和自动化的AI交互流程,帮助开发者和用户更高效地利用AI技术。Ape的核心优势在于其开源性、灵活性和易用性,适用于需要与AI进行复杂交互的场景。
开发者日志监控与调试的开源平台
Helicone AI是一个为开发者设计的开源平台,专注于日志记录、监控和调试。它具备毫秒级延迟影响、100%日志覆盖率和行业领先的查询时间,是为生产级工作负载设计的。平台通过Cloudflare Workers实现低延迟和高可靠性,并支持风险无忧的实验,无需安装SDK,仅需添加头部信息即可访问所有功能。
最前沿的开源AI模型,支持多语言和高级功能。
Llama 3.1是Meta AI推出的最新一代大型语言模型,具有128K的上下文长度扩展、支持八种语言,并首次开源了405B参数级别的前沿AI模型。该模型在通用知识、可控性、数学、工具使用和多语言翻译方面具有最先进的能力,能够与最好的闭源模型相媲美。Llama 3.1的发布,将为开发者提供解锁新工作流程的工具,例如合成数据生成和模型蒸馏。
52B参数的开源多语言大型语言模型
Tele-FLM(亦称FLM-2)是一个52亿参数的开源多语言大型语言模型,具有稳定高效的预训练范式和增强的事实判断能力。基于解码器仅变换器架构,已在大约2T的token上进行训练。Tele-FLM在同等规模上展现出优越的性能,有时甚至超越了更大的模型。除了分享模型权重外,我们还提供了核心设计、工程实践和训练细节,期待它们对学术界和工业界社区都有所裨益。
双语开源数学推理大型语言模型。
InternLM-Math-Plus 是一个最新的双语(英文和中文)开源大型语言模型(LLM),专注于数学推理,具有解决、证明、验证和增强数学问题的能力。它在非正式数学推理(如思维链和代码解释)和正式数学推理(如LEAN 4翻译和证明)方面都有显著的性能提升。
开源大型语言模型的托管、部署、构建和微调一站式解决方案。
AIKit 是一个开源工具,旨在简化大型语言模型(LLMs)的托管、部署、构建和微调过程。它提供了与OpenAI API兼容的REST API,支持多种推理能力和格式,使用户可以使用任何兼容的客户端发送请求。此外,AIKit 还提供了一个可扩展的微调接口,支持Unsloth,为用户提供快速、内存高效且易于使用的微调体验。
开源工具包,用于大型语言模型水印技术的研究和应用。
MarkLLM是一个开源工具包,旨在促进大型语言模型(Large Language Models, LLM)中水印技术的研究和应用。随着LLM的广泛使用,确保机器生成文本的真实性和来源变得至关重要。MarkLLM通过提供一个统一的、可扩展的平台,简化了水印技术的访问、理解和评估。它支持多种水印算法,包括KGW家族和EXP家族的算法,并提供了可视化工具和评估模块,帮助研究人员和开发者评估水印技术的可检测性、稳健性和对文本质量的影响。
一种用于扩展多模态大型语言模型(LLMs)的先进架构。
CuMo是一种多模态大型语言模型(LLMs)的扩展架构,它通过在视觉编码器和MLP连接器中融入稀疏的Top-K门控专家混合(MoE)块,提高了模型的可扩展性,同时在推理时几乎不增加激活参数。CuMo在预训练MLP块后,初始化MoE块中的每个专家,并在视觉指令调整阶段使用辅助损失以确保专家的均衡负载。CuMo在各种VQA和视觉指令遵循基准测试中超越了其他同类模型,且完全基于开源数据集进行训练。
一款专为生物医学领域设计的开源大型语言模型
OpenBioLLM-8B是由Saama AI Labs开发的先进开源语言模型,专为生物医学领域设计。该模型在大量高质量的生物医学数据上进行了微调,能够理解并生成具有领域特定准确性和流畅性的文字。它在生物医学基准测试中的表现超越了其他类似规模的开源生物医学语言模型,并与更大的专有和开源模型如GPT-3.5和Meditron-70B相比也展现出更好的结果。
一个新的高效开源大型语言模型标准
DBRX是一个由Databricks的Mosaic研究团队构建的通用大型语言模型(LLM),在标准基准测试中表现优于所有现有开源模型。它采用Mixture-of-Experts (MoE)架构,使用362亿个参数,拥有出色的语言理解、编程、数学和逻辑推理能力。DBRX旨在推动高质量开源LLM的发展,并且便于企业根据自身数据对模型进行定制。Databricks为企业用户提供了交互式使用DBRX、利用其长上下文能力构建检索增强系统,并基于自身数据构建定制DBRX模型的能力。
开放发布的Grok-1模型,拥有3140亿参数
Grok-1是由xAI从头开始训练的314亿参数的专家混合模型(Mixture-of-Experts)。该模型未经针对特定应用(如对话)的微调,是Grok-1预训练阶段的原始基础模型检查点。
一款开源大型语言模型,适用于中英文
MediaTek Research发布了名为MR Breeze-7B的新开源大型语言模型,拥有70亿参数,擅长处理中英文。相比先前的BLOOM-3B,MR Breeze-7B吸收了20倍的知识,使其能够精准处理传统中文语言的文化和语言细微差别。优化后,MR Breeze-7B在处理速度上胜过其他模型,为用户带来更流畅的体验。定价免费。
轻松构建和嵌入开源 AI 合作伙伴
OpenCopilot 是一个使构建自己的 AI 合作伙伴变得直观、快速和可靠的工具。无需具备前期 AI 经验,您可以轻松地将 AI 合作伙伴嵌入到产品中。无论是开发工具、SaaS 还是内部工具,每个公司和产品都可以拥有自己的 AI 合作伙伴。OpenCopilot 提供监控、评估系统、易于部署的开箱即用功能,并使用开源构建模块。现在就开始您的第一个 AI 合作伙伴吧!
统一的开放命名实体和语音识别模型
WhisperNER是一个结合了自动语音识别(ASR)和命名实体识别(NER)的统一模型,具备零样本能力。该模型旨在作为ASR带NER的下游任务的强大基础模型,并可以在特定数据集上进行微调以提高性能。WhisperNER的重要性在于其能够同时处理语音识别和实体识别任务,提高了处理效率和准确性,尤其在多语言和跨领域的场景中具有显著优势。
为数据中心打造的高效AI推理平台
d-Matrix是一家专注于AI推理技术的公司,其旗舰产品Corsair™是为数据中心设计的AI推理平台,能够提供极高的推理速度和极低的延迟。d-Matrix通过硬件软件协同设计,优化了Generative AI推理性能,推动了AI技术在数据中心的应用,使得大规模AI推理变得更加高效和可持续。
释放超级推理能力,提升AIME & MATH基准测试性能。
DeepSeek-R1-Lite-Preview是一款专注于提升推理能力的AI模型,它在AIME和MATH基准测试中展现了出色的性能。该模型具备实时透明的思考过程,并且计划推出开源模型和API。DeepSeek-R1-Lite-Preview的推理能力随着思考长度的增加而稳步提升,显示出更好的性能。产品背景信息显示,DeepSeek-R1-Lite-Preview是DeepSeek公司推出的最新产品,旨在通过人工智能技术提升用户的工作效率和问题解决能力。目前,产品提供免费试用,具体的定价和定位信息尚未公布。
© 2024 AIbase 备案号:闽ICP备08105208号-14