需求人群:
"ESFT 适合需要对大型语言模型进行定制化微调的研究人员和开发者。它能够帮助他们提高模型在特定任务上的性能,同时降低资源消耗。"
使用场景示例:
研究人员使用 ESFT 微调模型以提高在自然语言处理任务上的表现。
开发者利用 ESFT 优化模型,以适应特定行业的语言处理需求。
教育机构采用 ESFT 来定制教学辅助模型,提高教学互动性。
产品特色:
安装依赖并下载必要的适配器以快速启动。
使用 eval.py 脚本来评估模型在不同数据集上的性能。
使用 get_expert_scores.py 脚本来计算每个专家基于评估数据集的分数。
使用 generate_expert_config.py 脚本来生成配置,以转换仅基于任务相关任务训练的 MoE 模型。
使用教程:
1. 克隆或下载 ESFT 项目到本地。
2. 进入 esft 目录,安装所需的依赖项。
3. 下载必要的适配器以适配不同的大型语言模型。
4. 使用 eval.py 脚本来评估模型在特定数据集上的性能。
5. 根据评估结果,使用 get_expert_scores.py 脚本来计算专家分数。
6. 使用 generate_expert_config.py 脚本来生成配置,优化模型结构。
7. 根据生成的配置调整模型,进行进一步的训练和测试。
浏览量:41
最新流量情况
月访问量
4.75m
平均访问时长
00:06:34
每次访问页数
6.10
跳出率
36.20%
流量来源
直接访问
52.19%
自然搜索
32.64%
邮件
0.04%
外链引荐
12.93%
社交媒体
2.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.32%
德国
3.68%
印度
9.04%
俄罗斯
3.92%
美国
19.25%
定制化大型语言模型的专业微调工具
Expert Specialized Fine-Tuning (ESFT) 是一种针对具有专家混合(MoE)架构的大型语言模型(LLMs)的高效定制化微调方法。它通过仅调整与任务相关的部分来优化模型性能,提高效率,同时减少资源和存储的使用。
70亿参数的多语言大型语言模型
Llama-3.3-70B-Instruct是由Meta开发的一个70亿参数的大型语言模型,专门针对多语言对话场景进行了优化。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来提高其有用性和安全性。它支持多种语言,并能够处理文本生成任务,是自然语言处理领域的一项重要技术。
数据驱动的框架,增强大型语言模型的工作流编排能力
WorkflowLLM是一个以数据为中心的框架,旨在增强大型语言模型(LLMs)在工作流编排方面的能力。核心是WorkflowBench,这是一个大规模的监督式微调数据集,包含来自83个应用、28个类别的1503个API的106763个样本。WorkflowLLM通过微调Llama-3.1-8B模型,创建了专门针对工作流编排任务优化的WorkflowLlama模型。实验结果表明,WorkflowLlama在编排复杂工作流方面表现出色,并且能够很好地泛化到未见过的API。
70亿参数的大型多语言文本生成模型
Meta Llama 3.1是Meta公司推出的大型语言模型,拥有70亿个参数,支持8种语言的文本生成。该模型采用优化的Transformer架构,并通过监督式微调和人类反馈强化学习进一步优化,以符合人类对帮助性和安全性的偏好。模型在多语言对话使用案例中表现优异,超越了许多现有的开源和封闭聊天模型。
70B参数量的大型语言模型,专为工具使用优化
Llama-3-70B-Tool-Use是一种70B参数量的大型语言模型,专为高级工具使用和功能调用任务设计。该模型在Berkeley功能调用排行榜(BFCL)上的总体准确率达到90.76%,表现优于所有开源的70B语言模型。该模型优化了变换器架构,并通过完整的微调和直接偏好优化(DPO)在Llama 3 70B基础模型上进行了训练。输入为文本,输出为文本,增强了工具使用和功能调用的能力。尽管其主要用途是工具使用和功能调用,但在一般知识或开放式任务中,可能更适用通用语言模型。该模型可能在某些情况下产生不准确或有偏见的内容,用户应注意实现适合其特定用例的适当安全措施。该模型对温度和top_p采样配置非常敏感。
专为角色扮演优化的大型语言模型
Higgs-Llama-3-70B是一个基于Meta-Llama-3-70B的后训练模型,特别针对角色扮演进行了优化,同时在通用领域指令执行和推理方面保持竞争力。该模型通过监督式微调,结合人工标注者和私有大型语言模型构建偏好对,进行迭代偏好优化以对齐模型行为,使其更贴近系统消息。与其它指令型模型相比,Higgs模型更紧密地遵循其角色。
开源大型语言模型的托管、部署、构建和微调一站式解决方案。
AIKit 是一个开源工具,旨在简化大型语言模型(LLMs)的托管、部署、构建和微调过程。它提供了与OpenAI API兼容的REST API,支持多种推理能力和格式,使用户可以使用任何兼容的客户端发送请求。此外,AIKit 还提供了一个可扩展的微调接口,支持Unsloth,为用户提供快速、内存高效且易于使用的微调体验。
一款基于生物医学数据的8亿参数大型语言模型
Llama-3[8B] Meditron V1.0是一款专为生物医学领域设计的8亿参数的大型语言模型(LLM),在Meta发布Llama-3后24小时内完成微调。该模型在MedQA和MedMCQA等标准基准测试中超越了同参数级别的所有现有开放模型,并且接近70B参数级别医学领域领先的开放模型Llama-2[70B]-Meditron的性能。该工作展示了开放基础模型的创新潜力,是确保资源匮乏地区公平参与访问该技术更大倡议的一部分。
通过强化学习提升大型语言模型在开源软件演变中的推理能力
SWE-RL 是由 Facebook Research 提出的一种基于强化学习的大型语言模型推理技术,旨在利用开源软件演变数据提升模型在软件工程任务中的表现。该技术通过规则驱动的奖励机制,优化模型的推理能力,使其能够更好地理解和生成高质量的代码。SWE-RL 的主要优点在于其创新性的强化学习方法和对开源数据的有效利用,为软件工程领域带来了新的可能性。该技术目前处于研究阶段,尚未明确商业化定价,但其在提升开发效率和代码质量方面具有显著潜力。
探索大型语言模型作为编程辅导工具的潜力,提出Trace-and-Verify工作流。
Coding-Tutor是一个基于大型语言模型(LLM)的编程辅导工具,旨在通过对话式交互帮助学习者提升编程能力。它通过Trace-and-Verify(Traver)工作流,结合知识追踪和逐轮验证,解决编程辅导中的关键挑战。该工具不仅适用于编程教育,还可扩展到其他任务辅导场景,帮助根据学习者的知识水平调整教学内容。项目开源,支持社区贡献。
Goedel-Prover 是一款开源的自动化定理证明模型,专注于数学问题的形式化证明。
Goedel-Prover 是一款专注于自动化定理证明的开源大型语言模型。它通过将自然语言数学问题翻译为形式化语言(如 Lean 4),并生成形式化证明,显著提升了数学问题的自动化证明效率。该模型在 miniF2F 基准测试中达到了 57.6% 的成功率,超越了其他开源模型。其主要优点包括高性能、开源可扩展性以及对数学问题的深度理解能力。Goedel-Prover 旨在推动自动化定理证明技术的发展,并为数学研究和教育提供强大的工具支持。
OmniParser 是一款通用屏幕解析工具,可将 UI 截图转换为结构化格式,提升基于 LLM 的 UI 代理性能。
OmniParser 是微软开发的一种先进的图像解析技术,旨在将不规则的屏幕截图转换为结构化的元素列表,包括可交互区域的位置和图标的功能描述。它通过深度学习模型,如 YOLOv8 和 Florence-2,实现了对 UI 界面的高效解析。该技术的主要优点在于其高效性、准确性和广泛的适用性。OmniParser 可以显著提高基于大型语言模型(LLM)的 UI 代理的性能,使其能够更好地理解和操作各种用户界面。它在多种应用场景中表现出色,如自动化测试、智能助手开发等。OmniParser 的开源特性和灵活的许可证使其成为开发者和研究人员的有力工具。
Animagine XL 4.0 是一款专注于动漫风格的Stable Diffusion XL模型,专为生成高质量动漫图像而设计。
Animagine XL 4.0 是一款基于Stable Diffusion XL 1.0微调的动漫主题生成模型。它使用了840万张多样化的动漫风格图像进行训练,训练时长达到2650小时。该模型专注于通过文本提示生成和修改动漫主题图像,支持多种特殊标签,可控制图像生成的不同方面。其主要优点包括高质量的图像生成、丰富的动漫风格细节以及对特定角色和风格的精准还原。该模型由Cagliostro Research Lab开发,采用CreativeML Open RAIL++-M许可证,允许商业使用和修改。
Mistral Small 24B 是一款多语言、高性能的指令微调型大型语言模型,适用于多种应用场景。
Mistral Small 24B 是一款由 Mistral AI 团队开发的大型语言模型,拥有 240 亿参数,支持多语言对话和指令处理。该模型通过指令微调,能够生成高质量的文本内容,适用于聊天、写作、编程辅助等多种场景。其主要优点包括强大的语言生成能力、多语言支持以及高效推理能力。该模型适合需要高性能语言处理的个人和企业用户,具有开源许可,支持本地部署和量化优化,适合对数据隐私有要求的场景。
DeepSeek-R1-Distill-Llama-70B 是一款基于强化学习优化的大型语言模型,专注于推理和对话能力。
DeepSeek-R1-Distill-Llama-70B 是由 DeepSeek 团队开发的一款大型语言模型,基于 Llama-70B 架构并通过强化学习进行优化。该模型在推理、对话和多语言任务中表现出色,支持多种应用场景,包括代码生成、数学推理和自然语言处理。其主要优点是高效的推理能力和对复杂问题的解决能力,同时支持开源和商业使用。该模型适用于需要高性能语言生成和推理能力的企业和研究机构。
一个基于文本生成图像的预训练模型,具有80亿参数和Apache 2.0开源许可。
Flex.1-alpha 是一个强大的文本到图像生成模型,基于80亿参数的修正流变换器架构。它继承了FLUX.1-schnell的特性,并通过训练指导嵌入器,使其无需CFG即可生成图像。该模型支持微调,并且具有开放源代码许可(Apache 2.0),适合在多种推理引擎中使用,如Diffusers和ComfyUI。其主要优点包括高效生成高质量图像、灵活的微调能力和开源社区支持。开发背景是为了解决图像生成模型的压缩和优化问题,并通过持续训练提升模型性能。
这是一个先进的多模态大型语言模型系列,展示了卓越的整体性能。
InternVL2.5-MPO是一个基于InternVL2.5和混合偏好优化(MPO)的多模态大型语言模型系列。它在多模态任务中表现出色,通过整合新近增量预训练的InternViT与多种预训练的大型语言模型(LLMs),如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型系列在多模态推理偏好数据集MMPR上进行了训练,包含约300万个样本,通过有效的数据构建流程和混合偏好优化技术,提升了模型的推理能力和回答质量。
一个实时适应未见任务的自适应大型语言模型框架。
SakanaAI/self-adaptive-llms是一个名为Transformer²的自适应框架,旨在解决传统微调方法计算密集且处理多样化任务能力静态的挑战。该框架能够在推理过程中通过两步机制实时调整大型语言模型(LLMs)以适应未见任务:首先,调度系统识别任务属性;然后,使用强化学习训练的任务特定'专家'向量被动态混合,以获得针对输入提示的目标行为。主要优点包括实时任务适应性、计算效率和灵活性。该项目由SakanaAI团队开发,目前在GitHub上开源,拥有195颗星和12次分叉。
InternLM3-8B-Instruct是一个开源的80亿参数指令模型,用于通用用途和高级推理。
InternLM3-8B-Instruct是InternLM团队开发的大型语言模型,具有卓越的推理能力和知识密集型任务处理能力。该模型在仅使用4万亿高质量词元进行训练的情况下,实现了比同级别模型低75%以上的训练成本,同时在多个基准测试中超越了Llama3.1-8B和Qwen2.5-7B等模型。它支持深度思考模式,能够通过长思维链解决复杂的推理任务,同时也具备流畅的用户交互能力。该模型基于Apache-2.0许可证开源,适用于需要高效推理和知识处理的各种应用场景。
MinMo是一款多模态大型语言模型,用于无缝语音交互。
MinMo是阿里巴巴集团通义实验室开发的一款多模态大型语言模型,拥有约80亿参数,专注于实现无缝语音交互。它通过多个阶段的训练,包括语音到文本对齐、文本到语音对齐、语音到语音对齐和全双工交互对齐,在140万小时的多样化语音数据和广泛的语音任务上进行训练。MinMo在语音理解和生成的各种基准测试中达到了最先进的性能,同时保持了文本大型语言模型的能力,并支持全双工对话,即用户和系统之间的同时双向通信。此外,MinMo还提出了一种新颖且简单的语音解码器,在语音生成方面超越了以往的模型。MinMo的指令遵循能力得到了增强,支持根据用户指令控制语音生成,包括情感、方言和语速等细节,并模仿特定的声音。MinMo的语音到文本延迟约为100毫秒,全双工延迟理论上约为600毫秒,实际约为800毫秒。MinMo的开发旨在克服以往对齐多模态模型的主要限制,为用户提供更自然、流畅和人性化的语音交互体验。
基于Qwen2.5-Coder系列的大型语言模型,专注于代理应用。
Dria-Agent-a-3B是一个基于Qwen2.5-Coder系列的大型语言模型,专注于代理应用。它采用Pythonic函数调用方式,具有单次并行多函数调用、自由形式推理和动作以及即时复杂解决方案生成等优势。该模型在多个基准测试中表现出色,如Berkeley Function Calling Leaderboard (BFCL)、MMLU-Pro和Dria-Pythonic-Agent-Benchmark (DPAB)。模型大小为3.09B参数,支持BF16张量类型。
一个基于Qwen2.5-Coder系列训练的大型语言模型,专注于代理应用。
Dria-Agent-a-7B是一个基于Qwen2.5-Coder系列训练的大型语言模型,专注于代理应用。它采用Pythonic函数调用方式,与传统JSON函数调用方法相比,具有单次并行多函数调用、自由形式推理和动作以及即时复杂解决方案生成等优势。该模型在多个基准测试中表现出色,包括Berkeley Function Calling Leaderboard (BFCL)、MMLU-Pro和Dria-Pythonic-Agent-Benchmark (DPAB)。模型大小为76.2亿参数,采用BF16张量类型,支持文本生成任务。其主要优点包括强大的编程辅助能力、高效的函数调用方式以及在特定领域的高准确率。该模型适用于需要复杂逻辑处理和多步骤任务执行的应用场景,如自动化编程、智能代理等。目前,该模型在Hugging Face平台上提供,供用户免费使用。
Dria-Agent-α是基于Python的大型语言模型工具交互框架。
Dria-Agent-α是Hugging Face推出的大型语言模型(LLM)工具交互框架。它通过Python代码来调用工具,与传统的JSON模式相比,能更充分地发挥LLM的推理能力,使模型能够以更接近人类自然语言的方式进行复杂问题的解决。该框架利用Python的流行性和接近伪代码的语法,使LLM在代理场景中表现更佳。Dria-Agent-α的开发使用了合成数据生成工具Dria,通过多阶段管道生成逼真的场景,训练模型进行复杂问题解决。目前已有Dria-Agent-α-3B和Dria-Agent-α-7B两个模型在Hugging Face上发布。
基于特定模型的量化大型语言模型,适用于自然语言处理等任务。
该模型是量化版大型语言模型,采用4位量化技术,降低存储与计算需求,适用于自然语言处理,参数量8.03B,免费且可用于非商业用途,适合资源受限环境下高性能语言应用需求者。
InternVL2.5-MPO系列模型,基于InternVL2.5和混合偏好优化,展现卓越性能。
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化(MPO)构建。该系列模型在多模态任务中表现出色,能够处理图像、文本和视频数据,并生成高质量的文本响应。模型采用'ViT-MLP-LLM'范式,通过像素unshuffle操作和动态分辨率策略优化视觉处理能力。此外,模型还引入了多图像和视频数据的支持,进一步扩展了其应用场景。InternVL2.5-MPO在多模态能力评估中超越了多个基准模型,证明了其在多模态领域的领先地位。
Agent Laboratory是一个端到端的自主研究工作流,旨在协助人类研究人员实施研究想法。
Agent Laboratory是一个由Samuel Schmidgall等人开发的项目,旨在通过大型语言模型驱动的专门代理,帮助研究人员完成从文献综述到实验执行再到报告撰写的整个研究流程。它不是为了取代人类的创造力,而是为了补充创造力,使研究人员能够专注于构思和批判性思维,同时自动化编码和文档等重复性和耗时的任务。该工具的源代码采用MIT许可证,允许在遵守MIT许可证条款的情况下使用、修改和分发代码。
先进的多模态大型语言模型,具备卓越的多模态推理能力。
InternVL2_5-26B-MPO-AWQ 是由 OpenGVLab 开发的多模态大型语言模型,旨在通过混合偏好优化提升模型的推理能力。该模型在多模态任务中表现出色,能够处理图像和文本之间的复杂关系。它采用了先进的模型架构和优化技术,使其在多模态数据处理方面具有显著优势。该模型适用于需要高效处理和理解多模态数据的场景,如图像描述生成、多模态问答等。其主要优点包括强大的推理能力和高效的模型架构。
AnyParser Pro 是一款能够快速准确地从 PDF、PPT 和图像中提取内容的大型语言模型。
AnyParser Pro 是由 CambioML 开发的一款创新的文档解析工具,它利用大型语言模型(LLM)技术,能够快速准确地从 PDF、PPT 和图像文件中提取出完整的文本内容。该技术的主要优点在于其高效的处理速度和高精度的解析能力,能够显著提高文档处理的效率。AnyParser Pro 的背景信息显示,它是由 Y Combinator 孵化的初创公司 CambioML 推出的,旨在为用户提供一种简单易用且功能强大的文档解析解决方案。目前,该产品提供免费试用,用户可以通过获取 API 密钥来访问其功能。
高质量的数据集、工具和概念,用于大型语言模型的微调。
mlabonne/llm-datasets 是一个专注于大型语言模型(LLM)微调的高质量数据集和工具的集合。该产品为研究人员和开发者提供了一系列经过精心筛选和优化的数据集,帮助他们更好地训练和优化自己的语言模型。其主要优点在于数据集的多样性和高质量,能够覆盖多种使用场景,从而提高模型的泛化能力和准确性。此外,该产品还提供了一些工具和概念,帮助用户更好地理解和使用这些数据集。其背景信息包括由 mlabonne 创建和维护,旨在推动 LLM 领域的发展。
© 2025 AIbase 备案号:闽ICP备08105208号-14