需求人群:
"ESFT 适合需要对大型语言模型进行定制化微调的研究人员和开发者。它能够帮助他们提高模型在特定任务上的性能,同时降低资源消耗。"
使用场景示例:
研究人员使用 ESFT 微调模型以提高在自然语言处理任务上的表现。
开发者利用 ESFT 优化模型,以适应特定行业的语言处理需求。
教育机构采用 ESFT 来定制教学辅助模型,提高教学互动性。
产品特色:
安装依赖并下载必要的适配器以快速启动。
使用 eval.py 脚本来评估模型在不同数据集上的性能。
使用 get_expert_scores.py 脚本来计算每个专家基于评估数据集的分数。
使用 generate_expert_config.py 脚本来生成配置,以转换仅基于任务相关任务训练的 MoE 模型。
使用教程:
1. 克隆或下载 ESFT 项目到本地。
2. 进入 esft 目录,安装所需的依赖项。
3. 下载必要的适配器以适配不同的大型语言模型。
4. 使用 eval.py 脚本来评估模型在特定数据集上的性能。
5. 根据评估结果,使用 get_expert_scores.py 脚本来计算专家分数。
6. 使用 generate_expert_config.py 脚本来生成配置,优化模型结构。
7. 根据生成的配置调整模型,进行进一步的训练和测试。
浏览量:43
最新流量情况
月访问量
4.85m
平均访问时长
00:06:25
每次访问页数
6.08
跳出率
35.86%
流量来源
直接访问
52.62%
自然搜索
32.72%
邮件
0.05%
外链引荐
12.34%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
定制化大型语言模型的专业微调工具
Expert Specialized Fine-Tuning (ESFT) 是一种针对具有专家混合(MoE)架构的大型语言模型(LLMs)的高效定制化微调方法。它通过仅调整与任务相关的部分来优化模型性能,提高效率,同时减少资源和存储的使用。
先进的大型混合专家视觉语言模型
DeepSeek-VL2是一系列先进的大型混合专家(MoE)视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解、视觉定位等多项任务中展现出卓越的能力。DeepSeek-VL2由三种变体组成:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有1.0B、2.8B和4.5B激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集型和基于MoE的模型相比,达到了竞争性或最先进的性能。
高性能混合专家语言模型
DeepSeek-V2.5-1210是DeepSeek-V2.5的升级版本,它在多个能力方面进行了改进,包括数学、编码和写作推理。模型在MATH-500基准测试中的性能从74.8%提高到82.8%,在LiveCodebench (08.01 - 12.01)基准测试中的准确率从29.2%提高到34.38%。此外,新版本优化了文件上传和网页摘要功能的用户体验。DeepSeek-V2系列(包括基础和聊天)支持商业用途。
先进的大型混合专家视觉语言模型
DeepSeek-VL2是一系列先进的大型混合专家(MoE)视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解以及视觉定位等多种任务上展现出卓越的能力。DeepSeek-VL2由三种变体组成:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有10亿、28亿和45亿激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集型和基于MoE的模型相比,达到了竞争性或最先进的性能。
混合专家模型,性能优于单个专家模型
phixtral-2x2_8是第一个由两个microsoft/phi-2模型制作的混合专家模型,受到mistralai/Mixtral-8x7B-v0.1架构的启发。其性能优于每个单独的专家模型。该模型在AGIEval、GPT4All、TruthfulQA、Bigbench等多个评估指标上表现优异。它采用了自定义版本的mergekit库(mixtral分支)和特定配置。用户可以在Colab notebook上以4位精度在免费的T4 GPU上运行Phixtral。模型大小为4.46B参数,张量类型为F16。
开源的专家混合语言模型,具有1.3亿活跃参数。
OLMoE是一个完全开放的、最先进的专家混合模型,具有1.3亿活跃参数和6.9亿总参数。该模型的所有数据、代码和日志都已发布。它提供了论文'OLMoE: Open Mixture-of-Experts Language Models'的所有资源概览。该模型在预训练、微调、适应和评估方面都具有重要应用,是自然语言处理领域的一个里程碑。
业界领先的开源大型混合专家模型
Tencent-Hunyuan-Large(混元大模型)是由腾讯推出的业界领先的开源大型混合专家(MoE)模型,拥有3890亿总参数和520亿激活参数。该模型在自然语言处理、计算机视觉和科学任务等领域取得了显著进展,特别是在处理长上下文输入和提升长上下文任务处理能力方面表现出色。混元大模型的开源,旨在激发更多研究者的创新灵感,共同推动AI技术的进步和应用。
高效能混合专家语言模型
Yuan2.0-M32-hf-int8是一个具有32个专家的混合专家(MoE)语言模型,其中2个是活跃的。该模型通过采用新的路由网络——注意力路由器,提高了专家选择的效率,使得准确率比使用传统路由网络的模型提高了3.8%。Yuan2.0-M32从头开始训练,使用了2000亿个token,其训练计算量仅为同等参数规模的密集模型所需计算量的9.25%。该模型在编程、数学和各种专业领域展现出竞争力,并且只使用37亿个活跃参数,占总参数40亿的一小部分,每个token的前向计算仅为7.4 GFLOPS,仅为Llama3-70B需求的1/19。Yuan2.0-M32在MATH和ARC-Challenge基准测试中超越了Llama3-70B,分别达到了55.9%和95.8%的准确率。
多模态原生混合专家模型
Aria是一个多模态原生混合专家模型,具有强大的多模态、语言和编码任务性能。它在视频和文档理解方面表现出色,支持长达64K的多模态输入,能够在10秒内描述一个256帧的视频。Aria模型的参数量为25.3B,能够在单个A100(80GB)GPU上使用bfloat16精度进行加载。Aria的开发背景是满足对多模态数据理解的需求,特别是在视频和文档处理方面。它是一个开源模型,旨在推动多模态人工智能的发展。
一款高效经济的语言模型,具有强大的专家混合特性。
DeepSeek-V2是一个由236B参数构成的混合专家(MoE)语言模型,它在保持经济训练和高效推理的同时,激活每个token的21B参数。与前代DeepSeek 67B相比,DeepSeek-V2在性能上更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,并提升了最大生成吞吐量至5.76倍。该模型在8.1万亿token的高质量语料库上进行了预训练,并通过监督式微调(SFT)和强化学习(RL)进一步优化,使其在标准基准测试和开放式生成评估中表现出色。
高效能、低资源消耗的混合专家模型
GRIN-MoE是由微软开发的混合专家(Mixture of Experts, MoE)模型,专注于提高模型在资源受限环境下的性能。该模型通过使用SparseMixer-v2来估计专家路由的梯度,与传统的MoE训练方法相比,GRIN-MoE在不依赖专家并行处理和令牌丢弃的情况下,实现了模型训练的扩展。它在编码和数学任务上表现尤为出色,适用于需要强推理能力的场景。
开源大型语言模型的托管、部署、构建和微调一站式解决方案。
AIKit 是一个开源工具,旨在简化大型语言模型(LLMs)的托管、部署、构建和微调过程。它提供了与OpenAI API兼容的REST API,支持多种推理能力和格式,使用户可以使用任何兼容的客户端发送请求。此外,AIKit 还提供了一个可扩展的微调接口,支持Unsloth,为用户提供快速、内存高效且易于使用的微调体验。
一款基于指令微调的大型语言模型
Mistral-7B-Instruct-v0.2 是一款基于 Mistral-7B-v0.2 模型进行指令微调的大型语言模型。它拥有 32k 的上下文窗口和 1e6 的 Rope Theta 值等特性。该模型可以根据给定的指令生成相应的文本输出,支持各种任务,如问答、写作、翻译等。通过指令微调,模型可以更好地理解和执行指令。虽然该模型目前还没有针对性的审核机制,但未来将继续优化,以支持更多场景的部署。
MistralAI的新8x7B混合专家(MoE)基础模型,用于文本生成
MistralAI的新8x7B混合专家(MoE)基础模型,用于文本生成。该模型使用混合专家架构,可以生成高质量的文本。该模型的优势是可以生成高质量的文本,可以用于各种文本生成任务。该模型的定价是根据使用情况而定,具体可以参考官方网站。该模型的定位是为了解决文本生成任务中的问题。
高效能的混合专家语言模型
Yuan2.0-M32是一个具有32个专家的混合专家(MoE)语言模型,其中2个处于活跃状态。引入了新的路由网络——注意力路由器,以提高专家选择的效率,使模型在准确性上比使用传统路由器网络的模型提高了3.8%。Yuan2.0-M32从头开始训练,使用了2000亿个token,其训练计算量仅为同等参数规模密集型模型所需计算量的9.25%。在编码、数学和各种专业领域表现出竞争力,Yuan2.0-M32在总参数40亿中只有3.7亿活跃参数,每个token的前向计算量为7.4 GFLOPS,仅为Llama3-70B需求的1/19。Yuan2.0-M32在MATH和ARC-Challenge基准测试中超越了Llama3-70B,准确率分别达到了55.9%和95.8%。
70亿参数的多语言大型语言模型
Llama-3.3-70B-Instruct是由Meta开发的一个70亿参数的大型语言模型,专门针对多语言对话场景进行了优化。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来提高其有用性和安全性。它支持多种语言,并能够处理文本生成任务,是自然语言处理领域的一项重要技术。
Mistral Small 24B 是一款多语言、高性能的指令微调型大型语言模型,适用于多种应用场景。
Mistral Small 24B 是一款由 Mistral AI 团队开发的大型语言模型,拥有 240 亿参数,支持多语言对话和指令处理。该模型通过指令微调,能够生成高质量的文本内容,适用于聊天、写作、编程辅助等多种场景。其主要优点包括强大的语言生成能力、多语言支持以及高效推理能力。该模型适合需要高性能语言处理的个人和企业用户,具有开源许可,支持本地部署和量化优化,适合对数据隐私有要求的场景。
1460亿参数的高性能混合专家模型
Skywork-MoE-Base是一个具有1460亿参数的高性能混合专家(MoE)模型,由16个专家组成,并激活了220亿参数。该模型从Skywork-13B模型的密集型检查点初始化而来,并引入了两种创新技术:门控逻辑归一化增强专家多样化,以及自适应辅助损失系数,允许针对层特定调整辅助损失系数。Skywork-MoE在各种流行基准测试中表现出与参数更多或激活参数更多的模型相当的或更优越的性能。
多模态大型语言模型,提升视觉与语言的交互能力
InternVL2_5-8B-MPO-AWQ是OpenGVLab推出的一款多模态大型语言模型,它基于InternVL2.5系列,并采用混合偏好优化(Mixed Preference Optimization, MPO)技术。该模型在视觉和语言的理解与生成方面展现了卓越的性能,尤其在多模态任务中表现出色。它通过结合视觉部分InternViT和语言部分InternLM或Qwen,使用随机初始化的MLP投影器进行增量预训练,实现了对图像和文本的深入理解与交互。该技术的重要性在于它能够处理包括单图像、多图像以及视频数据在内的多种数据类型,为多模态人工智能领域提供了新的解决方案。
开放发布的Grok-1模型,拥有3140亿参数
Grok-1是由xAI从头开始训练的314亿参数的专家混合模型(Mixture-of-Experts)。该模型未经针对特定应用(如对话)的微调,是Grok-1预训练阶段的原始基础模型检查点。
高效扩展多模态大型语言模型至1000图像
LongLLaVA是一个多模态大型语言模型,通过混合架构高效扩展至1000图像,旨在提升图像处理和理解能力。该模型通过创新的架构设计,实现了在大规模图像数据上的有效学习和推理,对于图像识别、分类和分析等领域具有重要意义。
专为角色扮演优化的大型语言模型
Higgs-Llama-3-70B是一个基于Meta-Llama-3-70B的后训练模型,特别针对角色扮演进行了优化,同时在通用领域指令执行和推理方面保持竞争力。该模型通过监督式微调,结合人工标注者和私有大型语言模型构建偏好对,进行迭代偏好优化以对齐模型行为,使其更贴近系统消息。与其它指令型模型相比,Higgs模型更紧密地遵循其角色。
高效能混合专家注意力路由语言模型
Yuan2.0-M32是一个具有32个专家的混合专家(MoE)语言模型,其中2个是活跃的。提出了一种新的路由网络——注意力路由,用于更高效的专家选择,提高了3.8%的准确性。该模型从零开始训练,使用了2000B个token,其训练计算量仅为同等参数规模的密集模型所需计算量的9.25%。在编码、数学和各种专业领域表现出竞争力,仅使用3.7B个活跃参数,每个token的前向计算量仅为7.4 GFLOPS,仅为Llama3-70B需求的1/19。在MATH和ARC-Challenge基准测试中超越了Llama3-70B,准确率分别达到了55.9%和95.8%。
多模态大型语言模型,提升视觉与语言的交互能力。
InternVL2_5-26B-MPO是一个多模态大型语言模型(MLLM),它在InternVL2.5的基础上,通过混合偏好优化(Mixed Preference Optimization, MPO)进一步提升了模型性能。该模型能够处理包括图像、文本在内的多模态数据,广泛应用于图像描述、视觉问答等场景。它的重要性在于能够理解和生成与图像内容紧密相关的文本,推动了多模态人工智能的边界。产品背景信息包括其在多模态任务中的卓越性能,以及在OpenCompass Learderboard中的评估结果。该模型为研究者和开发者提供了强大的工具,以探索和实现多模态人工智能的潜力。
一款基于生物医学数据的8亿参数大型语言模型
Llama-3[8B] Meditron V1.0是一款专为生物医学领域设计的8亿参数的大型语言模型(LLM),在Meta发布Llama-3后24小时内完成微调。该模型在MedQA和MedMCQA等标准基准测试中超越了同参数级别的所有现有开放模型,并且接近70B参数级别医学领域领先的开放模型Llama-2[70B]-Meditron的性能。该工作展示了开放基础模型的创新潜力,是确保资源匮乏地区公平参与访问该技术更大倡议的一部分。
Moonlight-16B-A3B 是一个基于 Muon 优化器训练的 16B 参数的混合专家模型,用于高效的语言生成。
Moonlight-16B-A3B 是由 Moonshot AI 开发的一种大规模语言模型,采用先进的 Muon 优化器进行训练。该模型通过优化训练效率和性能,显著提升了语言生成的能力。其主要优点包括高效的优化器设计、较少的训练 FLOPs 和卓越的性能表现。该模型适用于需要高效语言生成的场景,如自然语言处理、代码生成和多语言对话等。其开源的实现和预训练模型为研究人员和开发者提供了强大的工具。
糖尿病护理专用的大型语言模型
Diabetica-7B是一个针对糖尿病护理领域优化的大型语言模型。它在糖尿病相关的多种任务上表现出色,包括诊断、治疗建议、药物管理、生活方式建议、患者教育等。该模型基于开源模型进行微调,使用特定疾病数据集和微调技术,提供了一个可复现的框架,可以加速AI辅助医疗的发展。此外,它还经过了全面的评估和临床试验,以验证其在临床应用中的有效性。
70亿参数的大型多语言文本生成模型
Meta Llama 3.1是Meta公司推出的大型语言模型,拥有70亿个参数,支持8种语言的文本生成。该模型采用优化的Transformer架构,并通过监督式微调和人类反馈强化学习进一步优化,以符合人类对帮助性和安全性的偏好。模型在多语言对话使用案例中表现优异,超越了许多现有的开源和封闭聊天模型。
© 2025 AIbase 备案号:闽ICP备08105208号-14