需求人群:
"Yuan2.0-M32-hf-int8模型适合需要处理大量数据和复杂任务的开发者和研究人员,尤其是在编程、数学和专业领域。它的高效率和准确性使其成为这些领域的理想选择。"
使用场景示例:
用于开发复杂的编程项目,提高代码生成的准确性
在数学问题求解中提供精确的计算和推理
应用于专业领域的知识获取和文本生成
产品特色:
32个专家中只有2个活跃,提高效率
使用注意力路由器,提升准确率3.8%
从头开始训练,使用2000亿个token
训练计算量小,仅占同等规模密集模型的9.25%
在编程、数学等领域有竞争力
在MATH和ARC-Challenge基准测试中表现优异
使用教程:
1. 配置环境,使用推荐的docker镜像启动Yuan2.0容器
2. 根据提供的脚本进行数据预处理
3. 使用示例脚本进行模型预训练
4. 参考vllm文档进行详细部署以提供推理服务
5. 访问GitHub仓库获取更多信息
浏览量:36
最新流量情况
月访问量
29742.94k
平均访问时长
00:04:44
每次访问页数
5.85
跳出率
44.20%
流量来源
直接访问
50.45%
自然搜索
33.93%
邮件
0.03%
外链引荐
12.90%
社交媒体
2.67%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
21.55%
印度
7.98%
日本
2.93%
俄罗斯
5.29%
美国
16.06%
高效能混合专家语言模型
Yuan2.0-M32-hf-int8是一个具有32个专家的混合专家(MoE)语言模型,其中2个是活跃的。该模型通过采用新的路由网络——注意力路由器,提高了专家选择的效率,使得准确率比使用传统路由网络的模型提高了3.8%。Yuan2.0-M32从头开始训练,使用了2000亿个token,其训练计算量仅为同等参数规模的密集模型所需计算量的9.25%。该模型在编程、数学和各种专业领域展现出竞争力,并且只使用37亿个活跃参数,占总参数40亿的一小部分,每个token的前向计算仅为7.4 GFLOPS,仅为Llama3-70B需求的1/19。Yuan2.0-M32在MATH和ARC-Challenge基准测试中超越了Llama3-70B,分别达到了55.9%和95.8%的准确率。
高效能的混合专家语言模型
Yuan2.0-M32是一个具有32个专家的混合专家(MoE)语言模型,其中2个处于活跃状态。引入了新的路由网络——注意力路由器,以提高专家选择的效率,使模型在准确性上比使用传统路由器网络的模型提高了3.8%。Yuan2.0-M32从头开始训练,使用了2000亿个token,其训练计算量仅为同等参数规模密集型模型所需计算量的9.25%。在编码、数学和各种专业领域表现出竞争力,Yuan2.0-M32在总参数40亿中只有3.7亿活跃参数,每个token的前向计算量为7.4 GFLOPS,仅为Llama3-70B需求的1/19。Yuan2.0-M32在MATH和ARC-Challenge基准测试中超越了Llama3-70B,准确率分别达到了55.9%和95.8%。
DeepEP 是一个针对 Mixture-of-Experts 和专家并行通信的高效通信库。
DeepEP 是一个专为混合专家模型(MoE)和专家并行(EP)设计的通信库。它提供了高吞吐量和低延迟的全连接 GPU 内核,支持低精度操作(如 FP8)。该库针对非对称域带宽转发进行了优化,适合训练和推理预填充任务。此外,它还支持流处理器(SM)数量控制,并引入了一种基于钩子的通信-计算重叠方法,不占用任何 SM 资源。DeepEP 的实现虽然与 DeepSeek-V3 论文略有差异,但其优化的内核和低延迟设计使其在大规模分布式训练和推理任务中表现出色。
Moonlight是一个16B参数的混合专家模型,使用Muon优化器训练,性能优异。
Moonlight是基于Muon优化器训练的16B参数混合专家模型(MoE),在大规模训练中表现出色。它通过添加权重衰减和调整参数更新比例,显著提高了训练效率和稳定性。该模型在多项基准测试中超越了现有模型,同时大幅减少了训练所需的计算量。Moonlight的开源实现和预训练模型为研究人员和开发者提供了强大的工具,支持多种自然语言处理任务,如文本生成、代码生成等。
先进的大型混合专家视觉语言模型
DeepSeek-VL2是一系列先进的大型混合专家(MoE)视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解以及视觉定位等多种任务上展现出卓越的能力。DeepSeek-VL2由三种变体组成:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有10亿、28亿和45亿激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集型和基于MoE的模型相比,达到了竞争性或最先进的性能。
业界领先的开源大型混合专家模型
Tencent-Hunyuan-Large(混元大模型)是由腾讯推出的业界领先的开源大型混合专家(MoE)模型,拥有3890亿总参数和520亿激活参数。该模型在自然语言处理、计算机视觉和科学任务等领域取得了显著进展,特别是在处理长上下文输入和提升长上下文任务处理能力方面表现出色。混元大模型的开源,旨在激发更多研究者的创新灵感,共同推动AI技术的进步和应用。
多模态原生混合专家模型
Aria是一个多模态原生混合专家模型,具有强大的多模态、语言和编码任务性能。它在视频和文档理解方面表现出色,支持长达64K的多模态输入,能够在10秒内描述一个256帧的视频。Aria模型的参数量为25.3B,能够在单个A100(80GB)GPU上使用bfloat16精度进行加载。Aria的开发背景是满足对多模态数据理解的需求,特别是在视频和文档处理方面。它是一个开源模型,旨在推动多模态人工智能的发展。
高效能、低资源消耗的混合专家模型
GRIN-MoE是由微软开发的混合专家(Mixture of Experts, MoE)模型,专注于提高模型在资源受限环境下的性能。该模型通过使用SparseMixer-v2来估计专家路由的梯度,与传统的MoE训练方法相比,GRIN-MoE在不依赖专家并行处理和令牌丢弃的情况下,实现了模型训练的扩展。它在编码和数学任务上表现尤为出色,适用于需要强推理能力的场景。
高效能混合专家注意力路由语言模型
Yuan2.0-M32是一个具有32个专家的混合专家(MoE)语言模型,其中2个是活跃的。提出了一种新的路由网络——注意力路由,用于更高效的专家选择,提高了3.8%的准确性。该模型从零开始训练,使用了2000B个token,其训练计算量仅为同等参数规模的密集模型所需计算量的9.25%。在编码、数学和各种专业领域表现出竞争力,仅使用3.7B个活跃参数,每个token的前向计算量仅为7.4 GFLOPS,仅为Llama3-70B需求的1/19。在MATH和ARC-Challenge基准测试中超越了Llama3-70B,准确率分别达到了55.9%和95.8%。
高效能长文本处理AI模型
Jamba 1.5 Open Model Family是AI21公司推出的最新AI模型系列,基于SSM-Transformer架构,具有超长文本处理能力、高速度和高质量,是市场上同类产品中表现最优的。这些模型专为企业级应用设计,考虑了资源效率、质量、速度和解决关键任务的能力。
© 2025 AIbase 备案号:闽ICP备08105208号-14