需求人群:
"目标受众为开发者、数据科学家和需要进行复杂编程和数学计算的专业人士。DeepSeek-V2.5-1210因其在编程和数学问题解决方面的高性能,特别适合需要处理大量数据和复杂算法的专业人士。"
使用场景示例:
使用DeepSeek-V2.5-1210生成C++快速排序代码。
利用模型进行数学问题的解答和验证。
通过模型对网页内容进行摘要,提取关键信息。
产品特色:
性能提升:在数学、编码和写作推理方面均有显著性能提升。
用户体验优化:优化了文件上传和网页摘要功能的用户交互。
模型推理:支持使用Huggingface的Transformers进行模型推理。
vLLM支持:推荐使用vLLM进行模型推理,需合并特定的Pull Request。
功能调用:模型能够调用外部工具以增强其能力。
JSON输出模式:确保模型生成有效的JSON对象。
FIM完成:提供前缀和可选后缀,模型将完成中间的内容。
使用教程:
1. 访问Hugging Face网站并搜索DeepSeek-V2.5-1210模型。
2. 根据需要的功能选择合适的推理方式:使用Huggingface的Transformers或vLLM。
3. 如果使用vLLM,需先合并提供的Pull Request到vLLM代码库中。
4. 准备输入数据,可以是编程问题、数学问题或需要推理的内容。
5. 根据模型的API文档,构建输入并调用模型进行推理。
6. 获取模型输出,并根据需要进行后处理,如解析JSON输出或继续后续的FIM完成。
7. 根据输出结果进行进一步的分析或应用。
浏览量:106
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
高性能混合专家语言模型
DeepSeek-V2.5-1210是DeepSeek-V2.5的升级版本,它在多个能力方面进行了改进,包括数学、编码和写作推理。模型在MATH-500基准测试中的性能从74.8%提高到82.8%,在LiveCodebench (08.01 - 12.01)基准测试中的准确率从29.2%提高到34.38%。此外,新版本优化了文件上传和网页摘要功能的用户体验。DeepSeek-V2系列(包括基础和聊天)支持商业用途。
混合专家模型,性能优于单个专家模型
phixtral-2x2_8是第一个由两个microsoft/phi-2模型制作的混合专家模型,受到mistralai/Mixtral-8x7B-v0.1架构的启发。其性能优于每个单独的专家模型。该模型在AGIEval、GPT4All、TruthfulQA、Bigbench等多个评估指标上表现优异。它采用了自定义版本的mergekit库(mixtral分支)和特定配置。用户可以在Colab notebook上以4位精度在免费的T4 GPU上运行Phixtral。模型大小为4.46B参数,张量类型为F16。
1460亿参数的高性能混合专家模型
Skywork-MoE-Base是一个具有1460亿参数的高性能混合专家(MoE)模型,由16个专家组成,并激活了220亿参数。该模型从Skywork-13B模型的密集型检查点初始化而来,并引入了两种创新技术:门控逻辑归一化增强专家多样化,以及自适应辅助损失系数,允许针对层特定调整辅助损失系数。Skywork-MoE在各种流行基准测试中表现出与参数更多或激活参数更多的模型相当的或更优越的性能。
开源的高性能语言模型,支持多端应用。
Qwen2.5系列语言模型是一系列开源的decoder-only稠密模型,参数规模从0.5B到72B不等,旨在满足不同产品对模型规模的需求。这些模型在自然语言理解、代码生成、数学推理等多个领域表现出色,特别适合需要高性能语言处理能力的应用场景。Qwen2.5系列模型的发布,标志着在大型语言模型领域的一次重要进步,为开发者和研究者提供了强大的工具。
高性能的7B参数因果语言模型
tiiuae/falcon-mamba-7b是由TII UAE开发的高性能因果语言模型,基于Mamba架构,专为生成任务设计。该模型在多个基准测试中展现出色的表现,并且能够在不同的硬件配置上运行,支持多种精度设置,以适应不同的性能和资源需求。模型的训练使用了先进的3D并行策略和ZeRO优化技术,使其在大规模GPU集群上高效训练成为可能。
开源的专家混合语言模型,具有1.3亿活跃参数。
OLMoE是一个完全开放的、最先进的专家混合模型,具有1.3亿活跃参数和6.9亿总参数。该模型的所有数据、代码和日志都已发布。它提供了论文'OLMoE: Open Mixture-of-Experts Language Models'的所有资源概览。该模型在预训练、微调、适应和评估方面都具有重要应用,是自然语言处理领域的一个里程碑。
先进的大型混合专家视觉语言模型
DeepSeek-VL2是一系列先进的大型混合专家(MoE)视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解、视觉定位等多项任务中展现出卓越的能力。DeepSeek-VL2由三种变体组成:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有1.0B、2.8B和4.5B激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集型和基于MoE的模型相比,达到了竞争性或最先进的性能。
专为 AI 设计的 GPU 云平台,提供高性能基础设施和全天候支持。
CoreWeave GPU 云计算是一个专为人工智能工作负载打造的云平台,提供灵活且高效的 GPU 集群,能够满足企业在大规模计算和存储方面的需求。它的主要优势包括极高的性能、可靠性和可扩展性,适合各种 AI 应用场景。通过 CoreWeave,用户能够显著降低云成本,同时提升服务响应速度,是 AI 创新的理想选择。
146亿参数的高性能MoE模型
Skywork-MoE是一个具有146亿参数的高性能混合专家(MoE)模型,拥有16个专家和22亿激活参数。该模型从Skywork-13B模型的密集型检查点初始化而来。引入了两种创新技术:门控逻辑归一化,增强专家多样化;自适应辅助损失系数,允许层特定的辅助损失系数调整。Skywork-MoE在各种流行基准测试中,如C-Eval、MMLU、CMMLU、GSM8K、MATH和HumanEval,展现出与参数更多或激活参数更多的模型相当的或更优越的性能。
高效能混合专家语言模型
Yuan2.0-M32-hf-int8是一个具有32个专家的混合专家(MoE)语言模型,其中2个是活跃的。该模型通过采用新的路由网络——注意力路由器,提高了专家选择的效率,使得准确率比使用传统路由网络的模型提高了3.8%。Yuan2.0-M32从头开始训练,使用了2000亿个token,其训练计算量仅为同等参数规模的密集模型所需计算量的9.25%。该模型在编程、数学和各种专业领域展现出竞争力,并且只使用37亿个活跃参数,占总参数40亿的一小部分,每个token的前向计算仅为7.4 GFLOPS,仅为Llama3-70B需求的1/19。Yuan2.0-M32在MATH和ARC-Challenge基准测试中超越了Llama3-70B,分别达到了55.9%和95.8%的准确率。
业界领先的开源大型混合专家模型
Tencent-Hunyuan-Large(混元大模型)是由腾讯推出的业界领先的开源大型混合专家(MoE)模型,拥有3890亿总参数和520亿激活参数。该模型在自然语言处理、计算机视觉和科学任务等领域取得了显著进展,特别是在处理长上下文输入和提升长上下文任务处理能力方面表现出色。混元大模型的开源,旨在激发更多研究者的创新灵感,共同推动AI技术的进步和应用。
多模态原生混合专家模型
Aria是一个多模态原生混合专家模型,具有强大的多模态、语言和编码任务性能。它在视频和文档理解方面表现出色,支持长达64K的多模态输入,能够在10秒内描述一个256帧的视频。Aria模型的参数量为25.3B,能够在单个A100(80GB)GPU上使用bfloat16精度进行加载。Aria的开发背景是满足对多模态数据理解的需求,特别是在视频和文档处理方面。它是一个开源模型,旨在推动多模态人工智能的发展。
一款高效经济的语言模型,具有强大的专家混合特性。
DeepSeek-V2是一个由236B参数构成的混合专家(MoE)语言模型,它在保持经济训练和高效推理的同时,激活每个token的21B参数。与前代DeepSeek 67B相比,DeepSeek-V2在性能上更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,并提升了最大生成吞吐量至5.76倍。该模型在8.1万亿token的高质量语料库上进行了预训练,并通过监督式微调(SFT)和强化学习(RL)进一步优化,使其在标准基准测试和开放式生成评估中表现出色。
引领RISC-V革命,提供高性能计算密度
SiFive是RISC-V架构的领导者,提供高性能、高效率的计算解决方案,适用于汽车、AI、数据中心等应用。其产品以优越的性能和效率,以及全球社区的支持,推动了RISC-V技术的发展和应用。
提升大型语言模型性能的混合代理技术
MoA(Mixture of Agents)是一种新颖的方法,它利用多个大型语言模型(LLMs)的集体优势来提升性能,实现了最先进的结果。MoA采用分层架构,每层包含多个LLM代理,显著超越了GPT-4 Omni在AlpacaEval 2.0上的57.5%得分,达到了65.1%的得分,使用的是仅开源模型。
先进的大型混合专家视觉语言模型
DeepSeek-VL2是一系列先进的大型混合专家(MoE)视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解以及视觉定位等多种任务上展现出卓越的能力。DeepSeek-VL2由三种变体组成:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有10亿、28亿和45亿激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集型和基于MoE的模型相比,达到了竞争性或最先进的性能。
以低成本实现高性能的大型语言模型
JetMoE-8B是一个开源的大型语言模型,通过使用公共数据集和优化的训练方法,以低于10万美元的成本实现了超越Meta AI LLaMA2-7B的性能。该模型在推理时仅激活22亿参数,大幅降低了计算成本,同时保持了优异的性能。
高效能、低资源消耗的混合专家模型
GRIN-MoE是由微软开发的混合专家(Mixture of Experts, MoE)模型,专注于提高模型在资源受限环境下的性能。该模型通过使用SparseMixer-v2来估计专家路由的梯度,与传统的MoE训练方法相比,GRIN-MoE在不依赖专家并行处理和令牌丢弃的情况下,实现了模型训练的扩展。它在编码和数学任务上表现尤为出色,适用于需要强推理能力的场景。
FlashInfer是一个用于大型语言模型服务的高性能GPU内核库。
FlashInfer是一个专为大型语言模型(LLM)服务而设计的高性能GPU内核库。它通过提供高效的稀疏/密集注意力机制、负载平衡调度、内存效率优化等功能,显著提升了LLM在推理和部署时的性能。FlashInfer支持PyTorch、TVM和C++ API,易于集成到现有项目中。其主要优点包括高效的内核实现、灵活的自定义能力和广泛的兼容性。FlashInfer的开发背景是为了满足日益增长的LLM应用需求,提供更高效、更可靠的推理支持。
Moonlight是一个16B参数的混合专家模型,使用Muon优化器训练,性能优异。
Moonlight是基于Muon优化器训练的16B参数混合专家模型(MoE),在大规模训练中表现出色。它通过添加权重衰减和调整参数更新比例,显著提高了训练效率和稳定性。该模型在多项基准测试中超越了现有模型,同时大幅减少了训练所需的计算量。Moonlight的开源实现和预训练模型为研究人员和开发者提供了强大的工具,支持多种自然语言处理任务,如文本生成、代码生成等。
MistralAI的新8x7B混合专家(MoE)基础模型,用于文本生成
MistralAI的新8x7B混合专家(MoE)基础模型,用于文本生成。该模型使用混合专家架构,可以生成高质量的文本。该模型的优势是可以生成高质量的文本,可以用于各种文本生成任务。该模型的定价是根据使用情况而定,具体可以参考官方网站。该模型的定位是为了解决文本生成任务中的问题。
Instella 是由 AMD 开发的高性能开源语言模型,专为加速开源语言模型的发展而设计。
Instella 是由 AMD GenAI 团队开发的一系列高性能开源语言模型,基于 AMD Instinct™ MI300X GPU 训练而成。该模型在性能上显著优于同尺寸的其他开源语言模型,并且在功能上与 Llama-3.2-3B 和 Qwen2.5-3B 等模型相媲美。Instella 提供模型权重、训练代码和训练数据,旨在推动开源语言模型的发展。其主要优点包括高性能、开源开放以及对 AMD 硬件的优化支持。
高效能的混合专家语言模型
Yuan2.0-M32是一个具有32个专家的混合专家(MoE)语言模型,其中2个处于活跃状态。引入了新的路由网络——注意力路由器,以提高专家选择的效率,使模型在准确性上比使用传统路由器网络的模型提高了3.8%。Yuan2.0-M32从头开始训练,使用了2000亿个token,其训练计算量仅为同等参数规模密集型模型所需计算量的9.25%。在编码、数学和各种专业领域表现出竞争力,Yuan2.0-M32在总参数40亿中只有3.7亿活跃参数,每个token的前向计算量为7.4 GFLOPS,仅为Llama3-70B需求的1/19。Yuan2.0-M32在MATH和ARC-Challenge基准测试中超越了Llama3-70B,准确率分别达到了55.9%和95.8%。
高效能的语言模型,支持本地智能和设备端计算。
Ministral-8B-Instruct-2410是由Mistral AI团队开发的一款大型语言模型,专为本地智能、设备端计算和边缘使用场景设计。该模型在类似的大小模型中表现优异,支持128k上下文窗口和交错滑动窗口注意力机制,能够在多语言和代码数据上进行训练,支持函数调用,词汇量达到131k。Ministral-8B-Instruct-2410模型在各种基准测试中表现出色,包括知识与常识、代码与数学以及多语言支持等方面。该模型在聊天/竞技场(gpt-4o判断)中的性能尤为突出,能够处理复杂的对话和任务。
Mercury Coder 是一款基于扩散模型的高性能代码生成语言模型。
Mercury Coder 是 Inception Labs 推出的首款商用级扩散大语言模型(dLLM),专为代码生成优化。该模型采用扩散模型技术,通过‘粗到细’的生成方式,显著提升生成速度和质量。其速度比传统自回归语言模型快 5-10 倍,能够在 NVIDIA H100 硬件上达到每秒 1000 多个 token 的生成速度,同时保持高质量的代码生成能力。该技术的背景是当前自回归语言模型在生成速度和推理成本上的瓶颈,而 Mercury Coder 通过算法优化突破了这一限制,为企业级应用提供了更高效、低成本的解决方案。
高效能混合专家注意力路由语言模型
Yuan2.0-M32是一个具有32个专家的混合专家(MoE)语言模型,其中2个是活跃的。提出了一种新的路由网络——注意力路由,用于更高效的专家选择,提高了3.8%的准确性。该模型从零开始训练,使用了2000B个token,其训练计算量仅为同等参数规模的密集模型所需计算量的9.25%。在编码、数学和各种专业领域表现出竞争力,仅使用3.7B个活跃参数,每个token的前向计算量仅为7.4 GFLOPS,仅为Llama3-70B需求的1/19。在MATH和ARC-Challenge基准测试中超越了Llama3-70B,准确率分别达到了55.9%和95.8%。
DeepSeek-V3/R1 推理系统是一个高性能的分布式推理架构,专为大规模 AI 模型优化设计。
DeepSeek-V3/R1 推理系统是 DeepSeek 团队开发的高性能推理架构,旨在优化大规模稀疏模型的推理效率。它通过跨节点专家并行(EP)技术,显著提升 GPU 矩阵计算效率,降低延迟。该系统采用双批量重叠策略和多级负载均衡机制,确保在大规模分布式环境中高效运行。其主要优点包括高吞吐量、低延迟和优化的资源利用率,适用于高性能计算和 AI 推理场景。
70B参数的大型量化语言模型
PatronusAI/Llama-3-Patronus-Lynx-70B-Instruct-Q4_K_M-GGUF是一个基于70B参数的大型量化语言模型,使用了4-bit量化技术,以减少模型大小并提高推理效率。该模型属于PatronusAI系列,是基于Transformers库构建的,适用于需要高性能自然语言处理的应用场景。模型遵循cc-by-nc-4.0许可协议,意味着可以非商业性地使用和分享。
© 2025 AIbase 备案号:闽ICP备08105208号-14