Phi-4-multimodal-instruct 是微软开发的轻量级多模态基础模型,支持文本、图像和音频输入。
Phi-4-multimodal-instruct 是微软开发的多模态基础模型,支持文本、图像和音频输入,生成文本输出。该模型基于Phi-3.5和Phi-4.0的研究和数据集构建,经过监督微调、直接偏好优化和人类反馈强化学习等过程,以提高指令遵循能力和安全性。它支持多种语言的文本、图像和音频输入,具有128K的上下文长度,适用于多种多模态任务,如语音识别、语音翻译、视觉问答等。该模型在多模态能力上取得了显著提升,尤其在语音和视觉任务上表现出色。它为开发者提供了强大的多模态处理能力,可用于构建各种多模态应用。
SmolVLM-500M 是一个轻量级多模态模型,能够处理图像和文本输入并生成文本输出。
SmolVLM-500M 是由 Hugging Face 开发的轻量级多模态模型,属于 SmolVLM 系列。该模型基于 Idefics3 架构,专注于高效的图像和文本处理任务。它能够接受任意顺序的图像和文本输入,生成文本输出,适用于图像描述、视觉问答等任务。其轻量级架构使其能够在资源受限的设备上运行,同时保持强大的多模态任务性能。该模型采用 Apache 2.0 许可证,支持开源和灵活的使用场景。
一个用于智能设备等的多模态原生代理框架。
OmAgent是一个多模态原生代理框架,用于智能设备等。它采用分治算法高效解决复杂任务,能预处理长视频并以类似人类的精度进行问答,还能基于用户请求和可选天气条件提供个性化服装建议等。目前官网未明确显示价格,但从功能来看,主要面向需要高效任务处理和智能交互的用户群体,如开发者、企业等。
PaliGemma 2是一款强大的视觉-语言模型,支持多种语言的图像和文本处理任务。
PaliGemma 2是由Google开发的视觉-语言模型,它结合了SigLIP视觉模型和Gemma 2语言模型的能力,能够处理图像和文本输入,并生成相应的文本输出。该模型在多种视觉-语言任务上表现出色,如图像描述、视觉问答等。其主要优点包括强大的多语言支持、高效的训练架构以及在多种任务上的优异性能。PaliGemma 2的开发背景是为了解决视觉和语言之间的复杂交互问题,帮助研究人员和开发者在相关领域取得突破。
PaliGemma 2是一个强大的视觉-语言模型,支持多种视觉语言任务。
PaliGemma 2是一个由Google开发的视觉-语言模型,继承了Gemma 2模型的能力,能够处理图像和文本输入并生成文本输出。该模型在多种视觉语言任务上表现出色,如图像描述、视觉问答等。其主要优点包括强大的多语言支持、高效的训练架构和广泛的适用性。该模型适用于需要处理视觉和文本数据的各种应用场景,如社交媒体内容生成、智能客服等。
多模态大型语言模型,提升视觉与语言的交互能力。
InternVL2_5-26B-MPO是一个多模态大型语言模型(MLLM),它在InternVL2.5的基础上,通过混合偏好优化(Mixed Preference Optimization, MPO)进一步提升了模型性能。该模型能够处理包括图像、文本在内的多模态数据,广泛应用于图像描述、视觉问答等场景。它的重要性在于能够理解和生成与图像内容紧密相关的文本,推动了多模态人工智能的边界。产品背景信息包括其在多模态任务中的卓越性能,以及在OpenCompass Learderboard中的评估结果。该模型为研究者和开发者提供了强大的工具,以探索和实现多模态人工智能的潜力。
多模态大型语言模型,提升视觉和语言的综合理解能力
InternVL2_5-1B-MPO是一个多模态大型语言模型(MLLM),它基于InternVL2.5和混合偏好优化(MPO)构建,展示了优越的整体性能。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL2.5-MPO在模型架构上保留了与InternVL 2.5及其前身相同的“ViT-MLP-LLM”范式,并引入了对多图像和视频数据的支持。该模型在多模态任务中表现出色,能够处理包括图像描述、视觉问答等多种视觉语言任务。
先进的大型混合专家视觉语言模型
DeepSeek-VL2是一系列先进的大型混合专家(MoE)视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解以及视觉定位等多种任务上展现出卓越的能力。DeepSeek-VL2由三种变体组成:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有10亿、28亿和45亿激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集型和基于MoE的模型相比,达到了竞争性或最先进的性能。
先进的多模态理解模型,融合视觉与语言能力。
DeepSeek-VL2是一系列大型Mixture-of-Experts视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解以及视觉定位等任务上展现出卓越的能力。DeepSeek-VL2包含三个变体:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有1.0B、2.8B和4.5B激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集和MoE基础模型相比,达到了竞争性或最先进的性能。
多模态12B参数模型,结合视觉编码器处理图像和文本。
Pixtral-12B-2409是由Mistral AI团队开发的多模态模型,包含12B参数的多模态解码器和400M参数的视觉编码器。该模型在多模态任务中表现出色,支持不同尺寸的图像,并在文本基准测试中保持最前沿的性能。它适用于需要处理图像和文本数据的高级应用,如图像描述生成、视觉问答等。
大型视频-语言模型,提供视觉问答和视频字幕生成。
VideoLLaMA2-7B是由DAMO-NLP-SG团队开发的多模态大型语言模型,专注于视频内容的理解和生成。该模型在视觉问答和视频字幕生成方面具有显著的性能,能够处理复杂的视频内容,并生成准确、自然的语言描述。它在空间-时间建模和音频理解方面进行了优化,为视频内容的智能分析和处理提供了强大的支持。
大型视频语言模型,提供视觉问答和视频字幕生成。
VideoLLaMA2-7B-Base 是由 DAMO-NLP-SG 开发的大型视频语言模型,专注于视频内容的理解与生成。该模型在视觉问答和视频字幕生成方面展现出卓越的性能,通过先进的空间时间建模和音频理解能力,为用户提供了一种新的视频内容分析工具。它基于 Transformer 架构,能够处理多模态数据,结合文本和视觉信息,生成准确且富有洞察力的输出。
一个通用的多模态模型,可用于问答、图像描述等任务
HuggingFaceM4/idefics-80b-instruct是一个开源的多模态模型,它可以接受图像和文本的输入,输出相关的文本内容。该模型在视觉问答、图像描述等任务上表现出色,是一个通用的智能助手模型。它由Hugging Face团队开发,基于开放数据集训练,提供免费使用。
© 2025 AIbase 备案号:闽ICP备08105208号-14