需求人群:
"Skywork-MoE模型适合需要处理大规模语言模型训练和推理的研究人员和开发者。它提供了高效的参数利用和强大的计算性能,尤其适合在资源受限或需要快速推理的场景中使用。"
使用场景示例:
研究人员使用Skywork-MoE进行自然语言处理任务的模型训练和测试。
企业利用Skywork-MoE模型进行产品文档的自动生成和问答系统开发。
教育机构采用Skywork-MoE模型辅助教学内容的自动生成和学生作业的自动批改。
产品特色:
具有146亿参数的大规模MoE模型
16个专家和22亿激活参数
门控逻辑归一化技术
自适应辅助损失系数调整
在多个基准测试中表现出色
支持fp8精度运行,优化资源利用
使用教程:
安装必要的依赖项,包括对应版本的PyTorch和vllm。
克隆Skywork提供的vllm代码库,并编译安装。
设置Docker环境,使用Skywork提供的Docker镜像直接运行vllm。
配置模型路径和工作目录,开始使用Skywork MoE模型进行文本生成等任务。
浏览量:24
最新流量情况
月访问量
29742.94k
平均访问时长
00:04:44
每次访问页数
5.85
跳出率
44.20%
流量来源
直接访问
50.45%
自然搜索
33.93%
邮件
0.03%
外链引荐
12.90%
社交媒体
2.67%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
21.55%
印度
7.98%
日本
2.93%
俄罗斯
5.29%
美国
16.06%
146亿参数的高性能MoE模型
Skywork-MoE是一个具有146亿参数的高性能混合专家(MoE)模型,拥有16个专家和22亿激活参数。该模型从Skywork-13B模型的密集型检查点初始化而来。引入了两种创新技术:门控逻辑归一化,增强专家多样化;自适应辅助损失系数,允许层特定的辅助损失系数调整。Skywork-MoE在各种流行基准测试中,如C-Eval、MMLU、CMMLU、GSM8K、MATH和HumanEval,展现出与参数更多或激活参数更多的模型相当的或更优越的性能。
Tülu 3 405B 是一个大规模开源语言模型,通过强化学习提升性能。
Tülu 3 405B 是由 Allen Institute for AI 开发的开源语言模型,具有 4050 亿参数。该模型通过创新的强化学习框架(RLVR)提升性能,尤其在数学和指令跟随任务中表现出色。它基于 Llama-405B 模型进行优化,采用监督微调、偏好优化等技术。Tülu 3 405B 的开源性质使其成为研究和开发领域的强大工具,适用于需要高性能语言模型的各种应用场景。
一款具有671B参数的Mixture-of-Experts语言模型。
DeepSeek-V3是一个强大的Mixture-of-Experts (MoE) 语言模型,拥有671B的总参数量,每次激活37B参数。它采用了Multi-head Latent Attention (MLA) 和 DeepSeekMoE架构,这些架构在DeepSeek-V2中得到了充分的验证。此外,DeepSeek-V3首次采用了无辅助损失的负载均衡策略,并设置了多令牌预测训练目标,以实现更强大的性能。DeepSeek-V3在14.8万亿高质量令牌上进行了预训练,随后进行了监督式微调和强化学习阶段,以充分利用其能力。综合评估显示,DeepSeek-V3超越了其他开源模型,并达到了与领先的闭源模型相当的性能。尽管性能出色,DeepSeek-V3的完整训练仅需要2.788M H800 GPU小时,并且训练过程非常稳定。
基于深度推理的神经机器翻译模型
DRT-o1-14B是一个神经机器翻译模型,旨在通过长链推理来提升翻译的深度和准确性。该模型通过挖掘含有比喻或隐喻的英文句子,并采用多代理框架(包括翻译者、顾问和评估者)来合成长思考的机器翻译样本。DRT-o1-14B基于Qwen2.5-14B-Instruct作为主干进行训练,具有14.8B的参数量,支持BF16张量类型。该模型的重要性在于其能够处理复杂的翻译任务,尤其是在需要深入理解和推理的情况下,提供了一种新的解决方案。
RWKV家族中最大的模型,采用MoE技术提升效率。
Flock of Finches 37B-A11B v0.1是RWKV家族的最新成员,这是一个实验性模型,拥有11亿个活跃参数,尽管仅训练了1090亿个token,但在常见基准测试中的得分与最近发布的Finch 14B模型大致相当。该模型采用了高效的稀疏混合专家(MoE)方法,在任何给定token上仅激活一部分参数,从而在训练和推理过程中节省时间和减少计算资源的使用。尽管这种架构选择以更高的VRAM使用为代价,但从我们的角度看,能够低成本训练和运行具有更大能力模型是非常值得的。
中国首个长时长、高一致性、高动态性视频大模型,一键生成高清视频内容。国内版的Sora
Vidu是由生数科技联合清华大学发布的中国首个长时长、高一致性、高动态性视频大模型。该模型采用原创的Diffusion与Transformer融合的架构U-ViT,支持一键生成长达16秒、分辨率高达1080P的高清视频内容。Vidu不仅能够模拟真实物理世界,还拥有丰富想象力,具备多镜头生成、时空一致性高等特点。其快速突破源自于团队在贝叶斯机器学习和多模态大模型的长期积累和多项原创性成果。Vidu的问世代表了生数科技在多模态原生大模型领域的持续创新能力和领先性,面向未来,灵活架构将能够兼容更广泛的模态,进一步拓展多模态通用能力的边界。
大规模MoE语言模型,性能媲美七十亿参数模型
Qwen1.5-MoE-A2.7B是一款大规模的MoE(Mixture of Experts)语言模型,仅有27亿个激活参数,但性能可与70亿参数模型相媲美。相比传统大模型,该模型训练成本降低75%,推理速度提高1.74倍。它采用特别的MoE架构设计,包括细粒度专家、新的初始化方法和路由机制等,大幅提升了模型效率。该模型可用于自然语言处理、代码生成等多种任务。
© 2025 AIbase 备案号:闽ICP备08105208号-14