需求人群:
["评估语言模型性能","测试不同提示技术的效果","检查对抗提示的稳健性","动态生成评估样本"]
使用场景示例:
使用promptbench快速评估语言模型在GLUE基准上的效果
测试基于情感的提示技术对模型性能的影响
构建对抗性提示,评估模型的稳健性
使用DyVal动态生成样本,进行模型评估
产品特色:
快速模型性能评估
提示工程
对抗提示评估
动态评估
浏览量:87
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
统一的语言模型评估框架
PromptBench是一个基于Pytorch的Python包,用于评估大型语言模型(LLM)。它为研究人员提供了用户友好的API,以便对LLM进行评估。主要功能包括:快速模型性能评估、提示工程、对抗提示评估以及动态评估等。优势是使用简单,可以快速上手评估已有数据集和模型,也可以轻松定制自己的数据集和模型。定位为LLM评估的统一开源库。
用于提示工程的开源可视化编程环境
ChainForge是一款开源的可视化编程环境,专注于提示工程。它可以让你评估提示和文本生成模型的稳健性,超越了简单的案例证据。我们认为,提示多个大型语言模型、比较它们的响应并测试关于它们的假设,应该不仅容易,而且有趣。ChainForge提供了一套工具,以最小的努力评估和可视化提示(和模型)的质量。换句话说,它旨在让大型语言模型的评估变得简单。ChainForge开箱即用地支持测试提示注入攻击的稳健性、测试响应格式的一致性、发送大量参数化提示并导出到Excel文件、验证同一模型不同设置的响应质量、测量不同系统消息对ChatGPT输出的影响等。
ChatGPT for YouTube,为YouTube提供定制的提示
ChatGPT for YouTube让YouTube的ChatGPT使用更加简单。您可以为每个新视频设置自定义提示。看了一个烹饪视频想要一个食谱?在回顾2009年的纪录片时感到困惑?GPT Prompts For YouTube应有尽有。欢迎使用这个插件,我们正在积极开发中,请在GitHub上留下您的反馈。如果遇到任何问题,请与我联系。
好的ChatGPT回答的秘密是好的提示,而好的提示往往会很长
Anywhere GPT是一个插件,它允许您保存提示并在任何地方快速应用它们。使用Anywhere GPT,您可以保存那些提示,并随时在需要时使用它们。它适用于Chrome浏览器,可以提高ChatGPT的使用效率。
构建为您工作的AI团队
使用BrainSoup,您可以创建自定义AI代理来处理任务并通过自然语言自动化流程。提高AI的能力与您的数据,同时保持最佳的隐私和安全性。BrainSoup支持多个大型语言模型和语义核心技术,使AI代理更加强大和个性化。
LLM的评估和单元测试框架
DeepEval提供了不同方面的度量来评估LLM对问题的回答,以确保答案是相关的、一致的、无偏见的、非有毒的。这些可以很好地与CI/CD管道集成在一起,允许机器学习工程师快速评估并检查他们改进LLM应用程序时,LLM应用程序的性能是否良好。DeepEval提供了一种Python友好的离线评估方法,确保您的管道准备好投入生产。它就像是“针对您的管道的Pytest”,使生产和评估管道的过程与通过所有测试一样简单直接。
创建宏,使用变量,访问预定义的提示。简化ChatGPT的工作流程!
GPT Macros允许您轻松地从常用提示中创建自定义宏,并以任何您喜欢的顺序重新排列它们。在提示中使用变量,提高您的工作效率。 功能: 🛠️ 从常用提示创建自定义宏 🔁 以任意顺序重新排列宏 🔢 在提示中使用变量 🌐 使用Web参数(从网站上提取数据) 🤖 使用系统提示 🔍 轻松搜索宏和提示 📁 访问预定义的提示和宏 变量使用示例: 用例:创建一个询问不同汉堡包(如麦香鸡,奶酪汉堡或巨无霸)的宏营养素的提示。 提示:给我${burger}的宏营养素 变量:[{"burger":"麦香鸡"},{"burger":"奶酪汉堡"},{"burger":"巨无霸"}] 立即尝试GPT Macros,提升您的ChatGPT工作流程的效率!
探索 ChatGPT 模板和提示的最佳选择,一站式获取。
ChatGPT 工具是一个整理了 1000 多个可操作且现成的 ChatGPT 模板和提示的平台。它为您成功使用 ChatGPT 和即将推出的生成式 AI 工具提供了方便的位置。该工具提供各种模板和提示,涵盖了多个领域和用途,包括市场营销、SEO、销售、内容创作、简历、电子商务、客户服务、UX 设计、网页开发、业务等。您可以浏览模板,将其应用于您的需求,并根据需要进行自定义。
管理和组织您的 ChatGPT 对话
Chatgpt 对话管理器是一款Chrome扩展程序,旨在帮助用户管理和组织他们的ChatGPT对话。这款工具的主要优点在于其快速过滤和访问功能,用户可以立即找到特定的对话;固定收藏夹功能,最多可以保存5个重要对话;以及使用文件夹进行组织的功能,可以将对话分类到自定义文件夹中,以获得更清晰、结构化的视图。这款插件的背景信息显示,它是开发者为了解决个人需求而构建的,并且完全基于ChatGPT构建。目前,该插件是免费的,并且正在积极开发中,以期吸引更多用户。
123B参数的大型语言模型,具备先进推理和编码能力。
Mistral-Large-Instruct-2411是由Mistral AI提供的一款具有123B参数的大型语言模型,它在推理、知识、编码等方面具有最先进的能力。该模型支持多种语言,并在80多种编程语言上进行了训练,包括但不限于Python、Java、C、C++等。它以代理为中心,具备原生函数调用和JSON输出能力,是进行科研和开发的理想选择。
Qwen2.5-Coder系列的1.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、代码推理和代码修复而设计。基于强大的Qwen2.5,通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此模型是1.5B参数的指令调优版本,采用GGUF格式,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
数据驱动的框架,增强大型语言模型的工作流编排能力
WorkflowLLM是一个以数据为中心的框架,旨在增强大型语言模型(LLMs)在工作流编排方面的能力。核心是WorkflowBench,这是一个大规模的监督式微调数据集,包含来自83个应用、28个类别的1503个API的106763个样本。WorkflowLLM通过微调Llama-3.1-8B模型,创建了专门针对工作流编排任务优化的WorkflowLlama模型。实验结果表明,WorkflowLlama在编排复杂工作流方面表现出色,并且能够很好地泛化到未见过的API。
124B参数的多模态大型语言模型
Pixtral-Large-Instruct-2411是由Mistral AI研发的124B参数的大型多模态模型,基于Mistral Large 2构建,展现出前沿级别的图像理解能力。该模型不仅能够理解文档、图表和自然图像,同时保持了Mistral Large 2在文本理解方面的领先地位。它在MathVista、DocVQA、VQAv2等数据集上达到了最先进的性能,是科研和商业应用的强大工具。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-8b是一个基于预训练的Llama3.1-8B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以用于声码器产生语音输出。该模型在翻译评估中表现出色,且没有偏好调整,适用于语音代理、语音到语音翻译、语音分析等场景。
提升AI模型响应质量的开发者控制台
Anthropic Console是一个开发者控制台,它通过引入改进提示和直接管理示例的功能,帮助开发者利用先进的提示工程技术来优化AI模型的响应。该控制台支持链式思考、示例标准化、示例增强、重写和预填充等功能,以提高AI模型的准确性和可靠性。Anthropic Console的背景是随着AI技术的发展,对于更高效、准确的AI应用需求的增加,特别是在多标签分类测试和文本摘要任务中,通过使用Anthropic Console,可以显著提高模型的准确性和输出的字数控制。
Hermes系列的最新版大型语言模型
Hermes 3是Nous Research公司推出的Hermes系列最新版大型语言模型(LLM),相较于Hermes 2,它在代理能力、角色扮演、推理、多轮对话、长文本连贯性等方面都有显著提升。Hermes系列模型的核心理念是将LLM与用户对齐,赋予终端用户强大的引导能力和控制权。Hermes 3在Hermes 2的基础上,进一步增强了功能调用和结构化输出能力,提升了通用助手能力和代码生成技能。
Nous Research推出的首款无限制AI聊天机器人
Nous Chat是AI研究组织Nous Research推出的首款面向用户的聊天机器人,它提供了对大型语言模型Hermes 3-70B的访问权限。Hermes 3-70B是Meta的Llama 3.1的一个变体,经过微调后,以ChatGPT等流行AI聊天工具的形式提供服务。该聊天机器人以其复古的设计语言和早期PC终端的字体和字符为特色,提供暗色和亮色模式供用户选择。尽管Nous Chat旨在允许用户部署和控制自己的AI模型,但它实际上设置了一些防护措施,包括禁止制造非法药物。此外,该模型的知识截止日期为2023年4月,因此在获取最新事件方面可能不如其他竞争对手有用。尽管如此,Nous Chat是一个有趣的实验,随着新功能的添加,它可能成为企业聊天机器人和AI模型的一个有吸引力的替代品。
跨平台通信协议,使不同的大型语言模型(LLMs)能够高效沟通。
Agora是一个简单的跨平台协议,允许异构的大型语言模型(LLMs)通过谈判高效地相互通信。该协议通过自然语言进行罕见通信,并为频繁通信协商出一种通信协议,通常涉及结构化数据(例如JSON)。一旦协议确定,它们将使用LLMs实现例程,即简单的脚本(例如Python),用于发送或接收数据。未来通信将使用这些例程处理,这意味着不再需要LLMs,从而实现了效率、多功能性和可移植性。
视频序列理解的GPU实现模型
PPLLaVA是一个高效的视频大型语言模型,它结合了细粒度视觉提示对齐、用户指令的卷积风格池化的视觉令牌压缩以及CLIP上下文扩展。该模型在VideoMME、MVBench、VideoChatGPT Bench和VideoQA Bench等数据集上建立了新的最先进结果,仅使用1024个视觉令牌,吞吐量提高了8倍。
简单易用,释放AI的强大力量
5ire是一个以简洁和用户友好为核心的AI产品,旨在让即使是初学者也能轻松利用大型语言模型。它支持多种文档格式的解析和向量化,具备本地知识库、使用分析、提示库、书签和快速关键词搜索等功能。作为一个开源项目,5ire提供免费下载,并且提供了按需付费的大型语言模型API服务。
O1复制之旅:战略进展报告第一部分
O1-Journey是由上海交通大学GAIR研究组发起的一个项目,旨在复制和重新想象OpenAI的O1模型的能力。该项目提出了“旅程学习”的新训练范式,并构建了首个成功整合搜索和学习在数学推理中的模型。这个模型通过试错、纠正、回溯和反思等过程,成为处理复杂推理任务的有效方法。
基于Llama-3-8B的多模态大型语言模型,专注于UI任务。
Ferret-UI是首个以用户界面为中心的多模态大型语言模型(MLLM),专为指代表达、定位和推理任务设计。它基于Gemma-2B和Llama-3-8B构建,能够执行复杂的用户界面任务。这个版本遵循了Apple的研究论文,是一个强大的工具,可以用于图像文本到文本的任务,并且在对话和文本生成方面具有优势。
在线URL解析器,将URL转换为适合大型语言模型的输入格式。
URL Parser Online是一个在线工具,它能够将复杂的URL转换为适合大型语言模型(LLMs)使用的输入格式。这项技术的重要性在于它能够帮助开发者和研究人员更有效地处理和解析URL数据,尤其是在进行网页内容分析和数据抽取时。产品背景信息显示,随着互联网数据量的爆炸式增长,对URL的解析和处理需求日益增加。URL Parser Online以其简洁的用户界面和高效的解析能力,为用户提供了一个便捷的解决方案。该产品目前提供免费服务,定位于开发者和数据分析师。
Promega通过ChatGPT加速制造、销售和市场营销。
Promega是一家在生命科学领域领先的公司,提供用于研究和应用技术的开创性生物试剂和集成系统。Promega通过自上而下地采用ChatGPT,帮助员工更高效地管理数千种产品和超过60,000个账户,从而加速产品交付到生物技术生态系统。ChatGPT的使用不仅提高了工作效率,还增强了客户关系,并在制造、销售和市场营销等多个领域发挥了重要作用。
SELA通过结合蒙特卡洛树搜索和基于LLM的代理来增强自动化机器学习。
SELA是一个创新系统,它通过将蒙特卡洛树搜索(MCTS)与基于大型语言模型(LLM)的代理结合起来,增强了自动化机器学习(AutoML)。传统的AutoML方法经常产生低多样性和次优的代码,限制了它们在模型选择和集成方面的有效性。SELA通过将管道配置表示为树,使代理能够智能地探索解决方案空间,并根据实验反馈迭代改进其策略。
Anthropic提供的教育课程,涵盖API基础和提示工程等领域。
Anthropic's educational courses是一个在线教育平台,提供关于如何使用Anthropic的API和提示工程技术的课程。这些课程旨在教育用户如何有效地与AI模型交互,提高工作效率和学习新技术。产品背景信息显示,这些课程适合希望深入了解AI技术和API使用的专业人士和学生,课程内容覆盖从基础到高级的多个层面。
长视频语言理解的时空自适应压缩模型
LongVU是一种创新的长视频语言理解模型,通过时空自适应压缩机制减少视频标记的数量,同时保留长视频中的视觉细节。这一技术的重要性在于它能够处理大量视频帧,且在有限的上下文长度内仅损失少量视觉信息,显著提升了长视频内容理解和分析的能力。LongVU在多种视频理解基准测试中均超越了现有方法,尤其是在理解长达一小时的视频任务上。此外,LongVU还能够有效地扩展到更小的模型尺寸,同时保持最先进的视频理解性能。
© 2024 AIbase 备案号:闽ICP备08105208号-14