需求人群:
"目标受众为研究人员、开发者和教育机构,他们需要评估和比较不同语言模型在多语言环境下的表现和能力。P-MMEval提供了一个标准化的测试平台,使得跨语言和跨模型的比较成为可能。"
使用场景示例:
研究人员使用P-MMEval来评估不同语言模型在特定任务上的表现。
教育机构利用P-MMEval来比较不同语言模型的教学效果。
开发者使用P-MMEval来优化和调整他们的语言模型,以适应多语言环境。
产品特色:
支持多达10种语言,包括英语、中文、阿拉伯语、西班牙语、法语、日语、韩语、葡萄牙语、泰语和越南语。
提供平行样本,支持跨语言能力评估和比较分析。
覆盖基础和能力专业化的数据集,适用于全面评估多语言能力。
支持闭源和开源模型的性能比较。
提供数据预览、数据集文件下载和快速使用指南。
支持使用OpenCompass进行LLMs评估。
提供vllm加速评估(需要vllm安装)。
使用教程:
1. 访问P-MMEval的ModelScope页面。
2. 阅读数据集介绍,了解P-MMEval的背景和目的。
3. 通过数据预览查看P-MMEval中包含的数据样本。
4. 下载数据集文件,准备进行模型评估。
5. 根据快速使用指南,配置OpenCompass和vllm进行模型评估。
6. 使用CLI命令或Python脚本启动评估过程。
7. 分析评估结果,比较不同模型的性能。
浏览量:49
最新流量情况
月访问量
2611.94k
平均访问时长
00:05:14
每次访问页数
6.58
跳出率
35.73%
流量来源
直接访问
66.42%
自然搜索
17.65%
邮件
0.01%
外链引荐
15.35%
社交媒体
0.20%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
81.26%
印度尼西亚
1.12%
美国
4.19%
多语言多任务基准测试,用于评估大型语言模型(LLMs)
P-MMEval是一个多语言基准测试,覆盖了基础和能力专业化的数据集。它扩展了现有的基准测试,确保所有数据集在语言覆盖上保持一致,并在多种语言之间提供平行样本,支持多达10种语言,涵盖8个语言家族。P-MMEval有助于全面评估多语言能力,并进行跨语言可转移性的比较分析。
Apollo是一个多语言医学领域的模型、数据集、基准和代码库
Apollo项目由FreedomIntelligence组织维护,旨在通过提供多语言医学领域的大型语言模型(LLMs)来民主化医疗AI,覆盖6亿人。该项目包括模型、数据集、基准测试和相关代码。
高性能语言模型基准测试数据集
DCLM-baseline是一个用于语言模型基准测试的预训练数据集,包含4T个token和3B个文档。它通过精心策划的数据清洗、过滤和去重步骤,从Common Crawl数据集中提取,旨在展示数据策划在训练高效语言模型中的重要性。该数据集仅供研究使用,不适用于生产环境或特定领域的模型训练,如代码和数学。
多语言模型问答助手
Snack AI是一款多语言模型问答助手,可以同时向多个语言模型提问并获取答案。它能够帮助用户快速获取准确的信息,并提供丰富的功能和使用场景。Snack AI的定价灵活多样,适合个人用户和企业用户的不同需求。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
多语言对话生成模型
Meta Llama 3.1系列模型是一套预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种规模的模型,专为多语言对话使用案例优化,性能优于许多开源和闭源聊天模型。
多语言大型语言模型,优化对话场景。
Meta Llama 3.1是一系列多语言的大型预训练和指令调整的生成模型,包含8B、70B和405B大小的版本。这些模型专为多语言对话用例而优化,并在常见行业基准测试中表现优于许多开源和闭源聊天模型。模型使用优化的transformer架构,并通过监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调整,以符合人类对有用性和安全性的偏好。
衡量语言模型回答事实性问题能力的基准测试
SimpleQA是OpenAI发布的一个事实性基准测试,旨在衡量语言模型回答简短、寻求事实的问题的能力。它通过提供高正确性、多样性、挑战性和良好的研究者体验的数据集,帮助评估和提升语言模型的准确性和可靠性。这个基准测试对于训练能够产生事实正确响应的模型是一个重要的进步,有助于提高模型的可信度,并拓宽其应用范围。
知识编辑基准测试,用于评估大型语言模型的知识编辑方法。
KnowEdit是一个专注于大型语言模型(LLMs)的知识编辑基准测试。它提供了一个综合的评估框架,用于测试和比较不同的知识编辑方法在修改特定领域内LLMs行为时的有效性,同时保持跨各种输入的整体性能。KnowEdit基准测试包括六个不同的数据集,涵盖了事实操作、情感修改和幻觉生成等多种编辑类型。该基准测试旨在帮助研究者和开发者更好地理解和改进知识编辑技术,推动LLMs的持续发展和应用。
多语言AI模型,支持101种语言。
Aya是由Cohere For AI领导的全球性倡议,涉及119个国家的3000多名独立研究人员。Aya是一个尖端模型和数据集,通过开放科学推进101种语言的多语言AI。Aya模型能够理解并按照101种语言的指令执行任务,是迄今为止最大的开放科学机器学习项目之一,重新定义了研究领域,通过与全球独立研究人员合作,实现了完全开源的数据集和模型。
70亿参数的多语言大型语言模型
Llama-3.3-70B-Instruct是由Meta开发的一个70亿参数的大型语言模型,专门针对多语言对话场景进行了优化。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来提高其有用性和安全性。它支持多种语言,并能够处理文本生成任务,是自然语言处理领域的一项重要技术。
研究项目,探索自动语言模型基准测试中的作弊行为。
Cheating LLM Benchmarks 是一个研究项目,旨在通过构建所谓的“零模型”(null models)来探索在自动语言模型(LLM)基准测试中的作弊行为。该项目通过实验发现,即使是简单的零模型也能在这些基准测试中取得高胜率,这挑战了现有基准测试的有效性和可靠性。该研究对于理解当前语言模型的局限性和改进基准测试方法具有重要意义。
多语言大型语言模型,支持23种语言
Aya Expanse是一个具有高级多语言能力的开放权重研究模型。它专注于将高性能的预训练模型与Cohere For AI一年的研究成果相结合,包括数据套利、多语言偏好训练、安全调整和模型合并。该模型是一个强大的多语言大型语言模型,服务于23种语言,包括阿拉伯语、中文(简体和繁体)、捷克语、荷兰语、英语、法语、德语、希腊语、希伯来语、印地语、印尼语、意大利语、日语、韩语、波斯语、波兰语、葡萄牙语、罗马尼亚语、俄语、西班牙语、土耳其语、乌克兰语和越南语。
多语言指令微调的大型语言模型
Aya-23-8B是由Cohere For AI开发的指令微调模型,具有23种语言的强大多语言能力,专注于将高性能预训练模型与Aya Collection结合,为研究人员提供高性能的多语言模型。
多语言对话生成模型
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),支持8种语言,专为对话使用案例优化,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)来提高安全性和有用性。
专注长文本、多语言、垂直化
达观 “曹植” 大模型是专注于长文本、多语言、垂直化发展的国产大语言模型。具有自动化写作、翻译、专业性报告写作能力,支持多语言应用和垂直行业定制。可提供高质量文案撰写服务,广泛适用于各行业,是解决企业实际问题的智能工具。
多语言大型语言模型
Llama-3.2-1B是由Meta公司发布的多语言大型语言模型,专注于文本生成任务。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。该模型支持8种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语,并在多种对话使用案例中表现优异。
多语言生成语言模型
Aya模型是一个大规模的多语言生成性语言模型,能够在101种语言中遵循指令。该模型在多种自动和人类评估中优于mT0和BLOOMZ,尽管它覆盖的语言数量是后者的两倍。Aya模型使用包括xP3x、Aya数据集、Aya集合、DataProvenance集合的一个子集和ShareGPT-Command等多个数据集进行训练,并在Apache-2.0许可下发布,以推动多语言技术的发展。
大型语言模型,支持多语言和编程语言文本生成。
Nemotron-4-340B-Base是由NVIDIA开发的大型语言模型,拥有3400亿参数,支持4096个token的上下文长度,适用于生成合成数据,帮助研究人员和开发者构建自己的大型语言模型。模型经过9万亿token的预训练,涵盖50多种自然语言和40多种编程语言。NVIDIA开放模型许可允许商业使用和派生模型的创建与分发,不声明对使用模型或派生模型生成的任何输出拥有所有权。
1T开源多语言大型语言模型
Tele-FLM-1T是一个开源的1T多语言大型语言模型,基于解码器仅Transformer架构,经过约2T tokens的训练。该模型在规模上展现出卓越的性能,有时甚至超越了更大的模型。除了分享模型权重外,还提供了核心设计、工程实践和训练细节,期待对学术和工业社区都有所裨益。
开源多语言多模态对话模型
GLM-4系列是智谱AI推出的新一代预训练模型,包括GLM-4-9B、GLM-4-9B-Chat、GLM-4-9B-Chat-1M和GLM-4V-9B。这些模型在语义理解、数学推理、代码执行等方面表现出色,支持多达26种语言,并具备网页浏览、代码执行等高级功能。GLM-4V-9B模型还具备高分辨率的视觉理解能力,适合多模态应用场景。
大型语言模型,支持多语言和代码数据
Mistral-Nemo-Instruct-2407是由Mistral AI和NVIDIA联合训练的大型语言模型(LLM),是Mistral-Nemo-Base-2407的指导微调版本。该模型在多语言和代码数据上进行了训练,显著优于大小相似或更小的现有模型。其主要特点包括:支持多语言和代码数据训练、128k上下文窗口、可替代Mistral 7B。模型架构包括40层、5120维、128头维、1436隐藏维、32个头、8个kv头(GQA)、2^17词汇量(约128k)、旋转嵌入(theta=1M)。该模型在多种基准测试中表现出色,如HellaSwag(0-shot)、Winogrande(0-shot)、OpenBookQA(0-shot)等。
多语言大型语言模型,支持多领域文本生成。
XVERSE-MoE-A36B是由深圳元象科技自主研发的多语言大型语言模型,采用混合专家模型(MoE)架构,具有2554亿的总参数规模和360亿的激活参数量。该模型支持包括中、英、俄、西等40多种语言,特别在中英双语上表现优异。模型使用8K长度的训练样本,并通过精细化的数据采样比例和动态数据切换策略,保证了模型的高质量和多样性。此外,模型还针对MoE架构进行了定制优化,提升了计算效率和整体吞吐量。
52B参数的开源多语言大型语言模型
Tele-FLM(亦称FLM-2)是一个52亿参数的开源多语言大型语言模型,具有稳定高效的预训练范式和增强的事实判断能力。基于解码器仅变换器架构,已在大约2T的token上进行训练。Tele-FLM在同等规模上展现出优越的性能,有时甚至超越了更大的模型。除了分享模型权重外,我们还提供了核心设计、工程实践和训练细节,期待它们对学术界和工业界社区都有所裨益。
多语言嵌入模型,用于视觉文档检索。
vdr-2b-multi-v1 是一款由 Hugging Face 推出的多语言嵌入模型,专为视觉文档检索设计。该模型能够将文档页面截图编码为密集的单向量表示,无需 OCR 或数据提取流程即可搜索和查询多语言视觉丰富的文档。基于 MrLight/dse-qwen2-2b-mrl-v1 开发,使用自建的多语言查询 - 图像对数据集进行训练,是 mcdse-2b-v1 的升级版,性能更强大。模型支持意大利语、西班牙语、英语、法语和德语,拥有 50 万高质量样本的开源多语言合成训练数据集,具有低 VRAM 和快速推理的特点,在跨语言检索方面表现出色。
MuLan:为110多种语言适配多语言扩散模型
MuLan是一个开源的多语言扩散模型,旨在为超过110种语言提供无需额外训练即可使用的扩散模型支持。该模型通过适配技术,使得原本需要大量训练数据和计算资源的扩散模型能够快速适应新的语言环境,极大地扩展了扩散模型的应用范围和语言多样性。MuLan的主要优点包括对多种语言的支持、优化的内存使用、以及通过技术报告和代码模型的发布,为研究人员和开发者提供了丰富的资源。
8B参数的大型多语言生成模型
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B大小的版本,支持8种语言,专为多语言对话用例优化,并在行业基准测试中表现优异。Llama 3.1模型采用自回归语言模型,使用优化的Transformer架构,并通过监督式微调(SFT)和强化学习结合人类反馈(RLHF)来提高模型的有用性和安全性。
© 2025 AIbase 备案号:闽ICP备08105208号-14