需求人群:
"MuLan模型适合于需要处理多语言图像生成任务的研究人员、开发者和企业用户。它为那些缺乏特定语言训练数据或者希望快速部署多语言图像生成系统的用户提供了便利。此外,对于教育和商业领域,MuLan可以作为教学工具或商业解决方案的一部分,帮助用户跨越语言障碍,实现图像内容的多语言生成。"
使用场景示例:
研究人员使用MuLan模型进行多语言图像生成的研究
开发者利用MuLan模型快速部署一个支持多国语言的图像生成应用
企业用户将MuLan集成到他们的产品中,为客户提供定制化的多语言图像生成服务
产品特色:
支持超过110种语言的扩散模型适配
优化内存使用,提高运行效率
发布技术报告和代码模型,便于研究和开发
支持基础模型如Stable Diffusion 1.5, 2.1, XL, Pixart-Alpha/Sigma
支持下游模型如ControlNet, LCM, LoRA, 以及微调模型等
提供Gradio演示,方便用户快速体验
在Huggingface上提供模型适配器和完整微调模型
使用教程:
访问MuLan的GitHub页面以获取最新信息和下载链接
阅读USAGE.md文件了解如何安装和使用MuLan模型
根据需要选择合适的基础模型或下游模型进行适配
通过Gradio演示体验MuLan模型的功能
在Huggingface上查找并使用MuLan提供的模型适配器和微调模型
根据具体的应用场景,编写或调整代码以实现所需的图像生成效果
参与社区讨论,获取帮助和反馈,优化模型使用效果
浏览量:99
最新流量情况
月访问量
4.85m
平均访问时长
00:06:25
每次访问页数
6.08
跳出率
35.86%
流量来源
直接访问
52.62%
自然搜索
32.72%
邮件
0.05%
外链引荐
12.34%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
MuLan:为110多种语言适配多语言扩散模型
MuLan是一个开源的多语言扩散模型,旨在为超过110种语言提供无需额外训练即可使用的扩散模型支持。该模型通过适配技术,使得原本需要大量训练数据和计算资源的扩散模型能够快速适应新的语言环境,极大地扩展了扩散模型的应用范围和语言多样性。MuLan的主要优点包括对多种语言的支持、优化的内存使用、以及通过技术报告和代码模型的发布,为研究人员和开发者提供了丰富的资源。
多语言模型问答助手
Snack AI是一款多语言模型问答助手,可以同时向多个语言模型提问并获取答案。它能够帮助用户快速获取准确的信息,并提供丰富的功能和使用场景。Snack AI的定价灵活多样,适合个人用户和企业用户的不同需求。
多语言对话生成模型
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),支持8种语言,专为对话使用案例优化,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)来提高安全性和有用性。
多语言对话生成模型
Meta Llama 3.1系列模型是一套预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种规模的模型,专为多语言对话使用案例优化,性能优于许多开源和闭源聊天模型。
多语言生成语言模型
Aya模型是一个大规模的多语言生成性语言模型,能够在101种语言中遵循指令。该模型在多种自动和人类评估中优于mT0和BLOOMZ,尽管它覆盖的语言数量是后者的两倍。Aya模型使用包括xP3x、Aya数据集、Aya集合、DataProvenance集合的一个子集和ShareGPT-Command等多个数据集进行训练,并在Apache-2.0许可下发布,以推动多语言技术的发展。
70亿参数的多语言大型语言模型
Llama-3.3-70B-Instruct是由Meta开发的一个70亿参数的大型语言模型,专门针对多语言对话场景进行了优化。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来提高其有用性和安全性。它支持多种语言,并能够处理文本生成任务,是自然语言处理领域的一项重要技术。
多语言大型语言模型,支持多领域文本生成。
XVERSE-MoE-A36B是由深圳元象科技自主研发的多语言大型语言模型,采用混合专家模型(MoE)架构,具有2554亿的总参数规模和360亿的激活参数量。该模型支持包括中、英、俄、西等40多种语言,特别在中英双语上表现优异。模型使用8K长度的训练样本,并通过精细化的数据采样比例和动态数据切换策略,保证了模型的高质量和多样性。此外,模型还针对MoE架构进行了定制优化,提升了计算效率和整体吞吐量。
多语言大型语言模型,优化对话场景。
Meta Llama 3.1是一系列多语言的大型预训练和指令调整的生成模型,包含8B、70B和405B大小的版本。这些模型专为多语言对话用例而优化,并在常见行业基准测试中表现优于许多开源和闭源聊天模型。模型使用优化的transformer架构,并通过监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调整,以符合人类对有用性和安全性的偏好。
8B参数的大型多语言生成模型
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B大小的版本,支持8种语言,专为多语言对话用例优化,并在行业基准测试中表现优异。Llama 3.1模型采用自回归语言模型,使用优化的Transformer架构,并通过监督式微调(SFT)和强化学习结合人类反馈(RLHF)来提高模型的有用性和安全性。
高分辨率、多语言文本到图像生成模型
Sana是一个由NVIDIA开发的文本到图像的框架,能够高效生成高达4096×4096分辨率的图像。Sana能够以极快的速度合成高分辨率、高质量的图像,并且具有强烈的文本-图像对齐能力,可以在笔记本电脑GPU上部署。该模型基于线性扩散变换器,使用固定预训练的文本编码器和空间压缩的潜在特征编码器,支持英文、中文和表情符号混合提示。Sana的主要优点包括高效率、高分辨率图像生成能力以及多语言支持。
自适应扩散模型,生成多语言字体效果
FontStudio是一个创新的字体效果生成模型,它利用自适应扩散技术,能够在不规则的字体形状画布上生成连贯一致的视觉内容。这项技术突破了传统矩形画布的限制,为多语言字体设计提供了新的解决方案。FontStudio系统在用户偏好研究中显示出明显的优势,甚至在与Adobe Firefly等顶尖商业产品比较时,也获得了78%的美学胜出率。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
多语言大型语言模型
Llama-3.2-1B是由Meta公司发布的多语言大型语言模型,专注于文本生成任务。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。该模型支持8种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语,并在多种对话使用案例中表现优异。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
开源的多语言代码生成模型
CodeGeeX4-ALL-9B是CodeGeeX4系列模型的最新开源版本,基于GLM-4-9B持续训练,显著提升了代码生成能力。它支持代码补全、生成、代码解释、网页搜索、函数调用、代码问答等功能,覆盖软件开发的多个场景。在公共基准测试如BigCodeBench和NaturalCodeBench上表现优异,是参数少于10亿的最强代码生成模型,实现了推理速度与模型性能的最佳平衡。
多语言大型语言模型,支持23种语言
Aya Expanse是一个具有高级多语言能力的开放权重研究模型。它专注于将高性能的预训练模型与Cohere For AI一年的研究成果相结合,包括数据套利、多语言偏好训练、安全调整和模型合并。该模型是一个强大的多语言大型语言模型,服务于23种语言,包括阿拉伯语、中文(简体和繁体)、捷克语、荷兰语、英语、法语、德语、希腊语、希伯来语、印地语、印尼语、意大利语、日语、韩语、波斯语、波兰语、葡萄牙语、罗马尼亚语、俄语、西班牙语、土耳其语、乌克兰语和越南语。
多语言AI模型,支持101种语言。
Aya是由Cohere For AI领导的全球性倡议,涉及119个国家的3000多名独立研究人员。Aya是一个尖端模型和数据集,通过开放科学推进101种语言的多语言AI。Aya模型能够理解并按照101种语言的指令执行任务,是迄今为止最大的开放科学机器学习项目之一,重新定义了研究领域,通过与全球独立研究人员合作,实现了完全开源的数据集和模型。
专注长文本、多语言、垂直化
达观 “曹植” 大模型是专注于长文本、多语言、垂直化发展的国产大语言模型。具有自动化写作、翻译、专业性报告写作能力,支持多语言应用和垂直行业定制。可提供高质量文案撰写服务,广泛适用于各行业,是解决企业实际问题的智能工具。
8亿参数的多语言视觉语言模型,支持OCR、图像描述、视觉推理等功能
CohereForAI的Aya Vision 8B是一个8亿参数的多语言视觉语言模型,专为多种视觉语言任务优化,支持OCR、图像描述、视觉推理、总结、问答等功能。该模型基于C4AI Command R7B语言模型,结合SigLIP2视觉编码器,支持23种语言,具有16K上下文长度。其主要优点包括多语言支持、强大的视觉理解能力以及广泛的适用场景。该模型以开源权重形式发布,旨在推动全球研究社区的发展。根据CC-BY-NC许可协议,用户需遵守C4AI的可接受使用政策。
多语言大型语言模型,优化对话和文本生成。
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种大小的模型,专门针对多语言对话使用案例进行了优化,并在行业基准测试中表现优异。该模型使用优化的transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进一步与人类偏好对齐,以确保其有用性和安全性。
大型语言模型,支持多语言和编程语言文本生成。
Nemotron-4-340B-Base是由NVIDIA开发的大型语言模型,拥有3400亿参数,支持4096个token的上下文长度,适用于生成合成数据,帮助研究人员和开发者构建自己的大型语言模型。模型经过9万亿token的预训练,涵盖50多种自然语言和40多种编程语言。NVIDIA开放模型许可允许商业使用和派生模型的创建与分发,不声明对使用模型或派生模型生成的任何输出拥有所有权。
70亿参数的大型多语言文本生成模型
Meta Llama 3.1是Meta公司推出的大型语言模型,拥有70亿个参数,支持8种语言的文本生成。该模型采用优化的Transformer架构,并通过监督式微调和人类反馈强化学习进一步优化,以符合人类对帮助性和安全性的偏好。模型在多语言对话使用案例中表现优异,超越了许多现有的开源和封闭聊天模型。
7B参数的多语言文本生成模型
CohereForAI/c4ai-command-r7b-12-2024是一个7B参数的多语言模型,专注于推理、总结、问答和代码生成等高级任务。该模型支持检索增强生成(RAG)和工具使用,能够使用和组合多个工具来完成更复杂的任务。它在企业相关的代码用例上表现优异,支持23种语言。
开源多语言多模态对话模型
GLM-4系列是智谱AI推出的新一代预训练模型,包括GLM-4-9B、GLM-4-9B-Chat、GLM-4-9B-Chat-1M和GLM-4V-9B。这些模型在语义理解、数学推理、代码执行等方面表现出色,支持多达26种语言,并具备网页浏览、代码执行等高级功能。GLM-4V-9B模型还具备高分辨率的视觉理解能力,适合多模态应用场景。
多语言指令微调的大型语言模型
Aya-23-8B是由Cohere For AI开发的指令微调模型,具有23种语言的强大多语言能力,专注于将高性能预训练模型与Aya Collection结合,为研究人员提供高性能的多语言模型。
1T开源多语言大型语言模型
Tele-FLM-1T是一个开源的1T多语言大型语言模型,基于解码器仅Transformer架构,经过约2T tokens的训练。该模型在规模上展现出卓越的性能,有时甚至超越了更大的模型。除了分享模型权重外,还提供了核心设计、工程实践和训练细节,期待对学术和工业社区都有所裨益。
多语言嵌入模型,用于视觉文档检索。
vdr-2b-multi-v1 是一款由 Hugging Face 推出的多语言嵌入模型,专为视觉文档检索设计。该模型能够将文档页面截图编码为密集的单向量表示,无需 OCR 或数据提取流程即可搜索和查询多语言视觉丰富的文档。基于 MrLight/dse-qwen2-2b-mrl-v1 开发,使用自建的多语言查询 - 图像对数据集进行训练,是 mcdse-2b-v1 的升级版,性能更强大。模型支持意大利语、西班牙语、英语、法语和德语,拥有 50 万高质量样本的开源多语言合成训练数据集,具有低 VRAM 和快速推理的特点,在跨语言检索方面表现出色。
AI平台,多语言生成商业创意
IdeaSpark是一个AI平台,帮助您在5种以上的语言中生成商业创意。解锁您的创造力,探索各种行业的机遇。该平台提供了生成商业创意、市场研究、商业模式、商业计划等工具,帮助您验证和推进创业项目。
© 2025 AIbase 备案号:闽ICP备08105208号-14