需求人群:
"LVBench适用于研究人员和开发者,他们需要评估和改进多模态大型语言模型在长视频理解方面的表现。"
使用场景示例:
研究人员使用LVBench评估不同模型在长视频问答任务上的表现
开发者利用LVBench的数据集训练和测试他们的视频理解模型
教育机构可能使用LVBench作为教学工具,帮助学生理解视频理解技术的前沿发展
产品特色:
提供长视频理解的基准测试
包含公开来源的视频,如电视剧、体育广播和日常监控录像
包含多种任务,旨在长视频理解和信息提取
利用手动注释和模型辅助技术创建视频理解问答数据集
挑战多模态模型展示长期记忆和扩展理解能力
通过LVBench推动更高级模型的发展,以处理长视频理解的复杂性
使用教程:
访问LVBench官方网站
了解LVBench的背景信息和重要性
查看数据集的详细信息,包括视频类别和子类别
分析不同模型在LVBench上的表现,了解当前技术的限制
利用LVBench的资源开发或改进自己的视频理解模型
参与LVBench的社区,与其他研究人员和开发者交流
浏览量:62
最新流量情况
月访问量
561
平均访问时长
00:00:05
每次访问页数
1.95
跳出率
57.00%
流量来源
直接访问
72.60%
自然搜索
11.93%
邮件
0.05%
外链引荐
5.39%
社交媒体
9.05%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
美国
100.00%
长视频理解基准测试
LVBench是一个专门设计用于长视频理解的基准测试,旨在推动多模态大型语言模型在理解数小时长视频方面的能力,这对于长期决策制定、深入电影评论和讨论、现场体育解说等实际应用至关重要。
大型多模态模型中视频理解的探索
Apollo是一个专注于视频理解的先进大型多模态模型家族。它通过系统性地探索视频-LMMs的设计空间,揭示了驱动性能的关键因素,提供了优化模型性能的实用见解。Apollo通过发现'Scaling Consistency',使得在较小模型和数据集上的设计决策能够可靠地转移到更大的模型上,大幅降低计算成本。Apollo的主要优点包括高效的设计决策、优化的训练计划和数据混合,以及一个新型的基准测试ApolloBench,用于高效评估。
视频指令调优与合成数据研究
LLaVA-Video是一个专注于视频指令调优的大型多模态模型(LMMs),通过创建高质量的合成数据集LLaVA-Video-178K来解决从网络获取大量高质量原始数据的难题。该数据集包括详细的视频描述、开放式问答和多项选择问答等任务,旨在提高视频语言模型的理解和推理能力。LLaVA-Video模型在多个视频基准测试中表现出色,证明了其数据集的有效性。
理解复杂视频,作诗配文的AI视频模型
MiniGPT4-Video是为视频理解设计的多模态大模型,能处理时态视觉数据和文本数据,配标题、宣传语,适用于视频问答。基于MiniGPT-v2,结合视觉主干EVA-CLIP,训练多阶段阶段,包括大规模视频-文本预训练和视频问题解答微调。在MSVD、MSRVTT、TGIF和TVQA基准上取得显著提升。定价未知。
生成高质量 SVG 代码的基础模型。
StarVector 是一个先进的生成模型,旨在将图像和文本指令转化为高质量的可缩放矢量图形(SVG)代码。其主要优点在于能够处理复杂的 SVG 元素,并在各种图形风格和复杂性上表现出色。作为开放源代码资源,StarVector 推动了图形设计的创新和效率,适用于设计、插图和技术文档等多种应用场景。
一种测试大语言模型在复杂社交博弈中智能性的基准测试框架,灵感来源于‘狼人杀’游戏。
Elimination Game 是一种创新的基准测试框架,用于评估大语言模型(LLMs)在复杂社交环境中的表现。它模拟了类似‘狼人杀’的多玩家竞争场景,通过公开讨论、私下交流和投票淘汰机制,测试模型的社交推理、策略选择和欺骗能力。该框架不仅为研究 AI 在社交博弈中的智能性提供了重要工具,还为开发者提供了洞察模型在现实社交场景中潜力的机会。其主要优点包括多轮互动设计、动态联盟与背叛机制以及详细的评估指标,能够全面衡量 AI 的社交能力。
用于多模态上下文中的检索增强生成的基准测试代码库。
M2RAG是一个用于多模态上下文中的检索增强生成的基准测试代码库。它通过多模态检索文档来回答问题,评估多模态大语言模型(MLLMs)在利用多模态上下文知识方面的能力。该模型在图像描述、多模态问答、事实验证和图像重排等任务上进行了评估,旨在提升模型在多模态上下文学习中的有效性。M2RAG为研究人员提供了一个标准化的测试平台,有助于推动多模态语言模型的发展。
TableGPT2的预构建代理,用于基于表格的问答任务。
TableGPT-agent 是一个基于 TableGPT2 的预构建代理模型,专为处理表格数据的问答任务而设计。它基于 Langgraph 库开发,提供用户友好的交互界面,能够高效处理与表格相关的复杂问题。TableGPT2 是一个大型多模态模型,能够将表格数据与自然语言处理相结合,为数据分析和知识提取提供强大的技术支持。该模型适用于需要快速准确处理表格数据的场景,如数据分析、商业智能和学术研究等。
ZeroBench 是一个针对当代大型多模态模型的高难度视觉基准测试。
ZeroBench 是一个专为评估大型多模态模型(LMMs)视觉理解能力而设计的基准测试。它通过 100 个精心设计且经过严格审查的复杂问题,以及 334 个子问题,挑战当前模型的极限。该基准测试旨在填补现有视觉基准的不足,提供更具挑战性和高质量的评估工具。ZeroBench 的主要优点是其高难度、轻量级、多样化和高质量的特点,使其能够有效区分模型的性能。此外,它还提供了详细的子问题评估,帮助研究人员更好地理解模型的推理能力。
SWE-Lancer 是一个包含 1400 多个自由软件工程任务的基准测试,总价值 100 万美元。
SWE-Lancer 是由 OpenAI 推出的一个基准测试,旨在评估前沿语言模型在真实世界中的自由软件工程任务中的表现。该基准测试涵盖了从 50 美元的漏洞修复到 32000 美元的功能实现等多种独立工程任务,以及模型在技术实现方案之间的选择等管理任务。通过模型将性能映射到货币价值,SWE-Lancer 为研究 AI 模型开发的经济影响提供了新的视角,并推动了相关研究的发展。
VideoRAG 是一个用于处理极长上下文视频的检索增强型生成框架。
VideoRAG 是一种创新的检索增强型生成框架,专门用于理解和处理极长上下文视频。它通过结合图驱动的文本知识锚定和层次化多模态上下文编码,实现了对无限制长度视频的理解。该框架能够动态构建知识图谱,保持多视频上下文的语义连贯性,并通过自适应多模态融合机制优化检索效率。VideoRAG 的主要优点包括高效的极长上下文视频处理能力、结构化的视频知识索引以及多模态检索能力,使其能够为复杂查询提供全面的回答。该框架在长视频理解领域具有重要的技术价值和应用前景。
Qwen2.5-VL 是一款强大的视觉语言模型,能够理解图像和视频内容并生成相应文本。
Qwen2.5-VL 是 Qwen 团队推出的最新旗舰视觉语言模型,是视觉语言模型领域的重要进步。它不仅能够识别常见物体,还能分析图像中的文字、图表、图标等复杂内容,并支持对长视频的理解和事件定位。该模型在多个基准测试中表现出色,尤其在文档理解和视觉代理任务中具有显著优势,展现了强大的视觉理解和推理能力。其主要优点包括高效的多模态理解、强大的长视频处理能力以及灵活的工具调用能力,适用于多种应用场景。
Tarsier 是由字节跳动推出的用于生成高质量视频描述的大型视频语言模型。
Tarsier 是由字节跳动研究团队开发的一系列大规模视频语言模型,旨在生成高质量的视频描述,并具备强大的视频理解能力。该模型通过两阶段训练策略(多任务预训练和多粒度指令微调)显著提升了视频描述的精度和细节。其主要优点包括高精度的视频描述能力、对复杂视频内容的理解能力以及在多个视频理解基准测试中取得的 SOTA(State-of-the-Art)结果。Tarsier 的背景基于对现有视频语言模型在描述细节和准确性上的不足进行改进,通过大规模高质量数据训练和创新的训练方法,使其在视频描述领域达到了新的高度。该模型目前未明确定价,主要面向学术研究和商业应用,适合需要高质量视频内容理解和生成的场景。
Humanity's Last Exam 是一个用于衡量大型语言模型能力的多模态基准测试。
Humanity's Last Exam 是一个由全球专家合作开发的多模态基准测试,旨在衡量大型语言模型在学术领域的表现。它包含来自 50 个国家超过 500 个机构的近 1000 名专家贡献的 3000 个问题,覆盖超过 100 个学科。该测试旨在成为最终的封闭式学术基准,通过挑战模型的极限来推动人工智能技术的发展。其主要优点是难度高,能够有效评估模型在复杂学术问题上的表现。
VideoLLaMA3是前沿的多模态基础模型,专注于图像和视频理解。
VideoLLaMA3是由DAMO-NLP-SG团队开发的前沿多模态基础模型,专注于图像和视频理解。该模型基于Qwen2.5架构,结合了先进的视觉编码器(如SigLip)和强大的语言生成能力,能够处理复杂的视觉和语言任务。其主要优点包括高效的时空建模能力、强大的多模态融合能力以及对大规模数据的优化训练。该模型适用于需要深度视频理解的应用场景,如视频内容分析、视觉问答等,具有广泛的研究和商业应用潜力。
一款能够自我进化的移动助手,专为复杂任务设计。
Mobile-Agent-E 是一款基于大型多模态模型(LMM)的移动助手,旨在帮助用户高效完成复杂的多步骤任务。它通过分层多智能体框架实现自我进化,能够从过去的任务中学习并改进。该产品的主要优点在于其强大的推理能力和对复杂任务的处理能力,尤其是在长周期、多应用交互的任务中表现出色。它适用于需要高效完成复杂移动任务的用户,如商务人士、研究人员等,目前处于研究阶段,未明确具体价格。
一个用于智能设备等的多模态原生代理框架。
OmAgent是一个多模态原生代理框架,用于智能设备等。它采用分治算法高效解决复杂任务,能预处理长视频并以类似人类的精度进行问答,还能基于用户请求和可选天气条件提供个性化服装建议等。目前官网未明确显示价格,但从功能来看,主要面向需要高效任务处理和智能交互的用户群体,如开发者、企业等。
用于衡量设备 AI 加速器推理性能的基准测试工具。
Procyon AI Image Generation Benchmark 是一款由 UL Solutions 开发的基准测试工具,旨在为专业用户提供一个一致、准确且易于理解的工作负载,用以测量设备上 AI 加速器的推理性能。该基准测试与多个关键行业成员合作开发,确保在所有支持的硬件上产生公平且可比较的结果。它包括三个测试,可测量从低功耗 NPU 到高端独立显卡的性能。用户可以通过 Procyon 应用程序或命令行进行配置和运行,支持 NVIDIA® TensorRT™、Intel® OpenVINO™ 和 ONNX with DirectML 等多种推理引擎。产品主要面向工程团队,适用于评估推理引擎实现和专用硬件的通用 AI 性能。价格方面,提供免费试用,正式版为年度场地许可,需付费获取报价。
视觉定位GUI指令的多模态模型
Aria-UI是一个专为GUI指令视觉定位而设计的大规模多模态模型。它采用纯视觉方法,不依赖辅助输入,能够适应多样化的规划指令,并通过合成多样化、高质量的指令样本来适应不同的任务。Aria-UI在离线和在线代理基准测试中均创下新的最高记录,超越了仅依赖视觉和依赖AXTree的基线。
AI视频生成提示库
videoprompt.org是一个专注于AI视频生成提示的网站,提供了一系列用于生成、编辑或理解视频内容的指令集。它通过精选的高质量提示集合、社区驱动的方法和对实际应用的关注,帮助用户解锁AI模型在视频处理中的全部潜力,提高视频制作工作流程的效率,并实现一致的高质量结果。
开源AI芯片性能基准测试平台
FlagPerf是由智源研究院联合AI硬件厂商共建的一体化AI硬件评测引擎,旨在建立以产业实践为导向的指标体系,评测AI硬件在软件栈组合(模型+框架+编译器)下的实际能力。该平台支持多维度评测指标体系,覆盖大模型训练推理场景,并支持多训练框架及推理引擎,连接AI硬件与软件生态。
模型评测平台
FlagEval是一个模型评测平台,专注于大语言模型和多模态模型的评测。它提供了一个公正、透明的环境,让不同的模型在同一标准下进行比较,帮助研究者和开发者了解模型性能,推动人工智能技术的发展。该平台涵盖了对话模型、视觉语言模型等多种模型类型,支持开源和闭源模型的评测,并提供专项评测如K12学科测验和金融量化交易评测。
AI文本生成性能测试工具
Procyon AI Text Generation Benchmark 是一款专门用于测试和评估AI本地大型语言模型(LLM)性能的基准测试工具。它通过与AI软硬件领域的领导者紧密合作,确保测试能够充分利用系统中的本地AI加速硬件。该工具简化了PC性能比较和成本合理化,验证和标准化PC性能,并简化IT团队的PC生命周期管理,允许快速做出决策,以提供PC性能,降低硬件成本,节省测试时间。
专业用户的性能测试基准套件
Procyon是由UL Solutions开发的一套性能测试基准工具,专为工业、企业、政府、零售和媒体的专业用户设计。Procyon套件中的每个基准测试都提供了一致且熟悉的体验,并共享一套共同的设计和功能。灵活的许可模式意味着用户可以根据自己的需求选择适合的单个基准测试。Procyon基准测试套件很快将提供一系列针对专业用户的基准测试和性能测试,每个基准测试都针对特定用例设计,并尽可能使用真实应用。UL Solutions与行业合作伙伴紧密合作,确保每个Procyon基准测试准确、相关且公正。
用于评估大型语言模型事实性的最新基准
FACTS Grounding是Google DeepMind推出的一个全面基准测试,旨在评估大型语言模型(LLMs)生成的回应是否不仅在给定输入方面事实准确,而且足够详细,能够为用户提供满意的答案。这一基准测试对于提高LLMs在现实世界中应用的信任度和准确性至关重要,有助于推动整个行业在事实性和基础性方面的进步。
世界上最快的边缘部署音频语言模型
OmniAudio-2.6B是一个2.6B参数的多模态模型,能够无缝处理文本和音频输入。该模型结合了Gemma-2B、Whisper turbo和一个自定义投影模块,与传统的将ASR和LLM模型串联的方法不同,它将这两种能力统一在一个高效的架构中,以最小的延迟和资源开销实现。这使得它能够安全、快速地在智能手机、笔记本电脑和机器人等边缘设备上直接处理音频文本。
衡量Android设备AI性能和质量的基准测试工具
Procyon AI Inference Benchmark for Android是一款基于NNAPI的基准测试工具,用于衡量Android设备上的AI性能和质量。它通过一系列流行的、最先进的神经网络模型来执行常见的机器视觉任务,帮助工程团队独立、标准化地评估NNAPI实现和专用移动硬件的AI性能。该工具不仅能够测量Android设备上专用AI处理硬件的性能,还能够验证NNAPI实现的质量,对于优化硬件加速器的驱动程序、比较浮点和整数优化模型的性能具有重要意义。
个人电脑AI性能基准测试
MLPerf Client是由MLCommons共同开发的新基准测试,旨在评估个人电脑(从笔记本、台式机到工作站)上大型语言模型(LLMs)和其他AI工作负载的性能。该基准测试通过模拟真实世界的AI任务,提供清晰的指标,以了解系统如何处理生成性AI工作负载。MLPerf Client工作组希望这个基准测试能够推动创新和竞争,确保个人电脑能够应对AI驱动的未来挑战。
多语言多任务基准测试,用于评估大型语言模型(LLMs)
P-MMEval是一个多语言基准测试,覆盖了基础和能力专业化的数据集。它扩展了现有的基准测试,确保所有数据集在语言覆盖上保持一致,并在多种语言之间提供平行样本,支持多达10种语言,涵盖8个语言家族。P-MMEval有助于全面评估多语言能力,并进行跨语言可转移性的比较分析。
Qwen2-VL-7B是最新的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-7B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。此外,Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
© 2025 AIbase 备案号:闽ICP备08105208号-14