需求人群:
"目标受众为视频理解、视频分析和多媒体处理领域的研究人员和开发者。PPLLaVA因其高效的视频处理能力和细粒度的理解能力,特别适合需要进行视频内容分析和生成的应用场景。"
使用场景示例:
- 视频内容生成:利用PPLLaVA生成视频内容,用于娱乐或教育目的。
- 视频问答系统:构建一个系统,能够回答关于视频内容的问题,提高信息检索效率。
- 视频分析工具:用于安全监控,通过分析视频流来识别异常行为。
产品特色:
- 细粒度视觉-提示对齐:提高视频内容理解的准确性。
- 视觉令牌压缩:通过用户指令进行视觉令牌压缩,优化模型效率。
- CLIP上下文扩展:增强模型对视频上下文的理解能力。
- 视频密集描述:平衡前景和背景的内容、状态和运动,同时保持细节和准确性。
- 多轮对话和推理:能够进行流畅的问答互动,并提供合理的推断。
- 模型吞吐量提升:相比其他模型,PPLLaVA的吞吐量提高了8倍。
使用教程:
1. 克隆PPLLaVA的代码库到本地。
2. 创建并激活Python虚拟环境。
3. 安装所需的依赖项。
4. 下载并加载预训练的模型权重。
5. 运行Gradio演示或自定义的演示脚本。
6. 根据需要调整模型参数和配置。
7. 训练或微调模型以适应特定的视频理解任务。
8. 评估模型性能并根据结果进行优化。
浏览量:5
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
视频序列理解的GPU实现模型
PPLLaVA是一个高效的视频大型语言模型,它结合了细粒度视觉提示对齐、用户指令的卷积风格池化的视觉令牌压缩以及CLIP上下文扩展。该模型在VideoMME、MVBench、VideoChatGPT Bench和VideoQA Bench等数据集上建立了新的最先进结果,仅使用1024个视觉令牌,吞吐量提高了8倍。
长视频语言理解的时空自适应压缩模型
LongVU是一种创新的长视频语言理解模型,通过时空自适应压缩机制减少视频标记的数量,同时保留长视频中的视觉细节。这一技术的重要性在于它能够处理大量视频帧,且在有限的上下文长度内仅损失少量视觉信息,显著提升了长视频内容理解和分析的能力。LongVU在多种视频理解基准测试中均超越了现有方法,尤其是在理解长达一小时的视频任务上。此外,LongVU还能够有效地扩展到更小的模型尺寸,同时保持最先进的视频理解性能。
视频指令调优与合成数据研究
LLaVA-Video是一个专注于视频指令调优的大型多模态模型(LMMs),通过创建高质量的合成数据集LLaVA-Video-178K来解决从网络获取大量高质量原始数据的难题。该数据集包括详细的视频描述、开放式问答和多项选择问答等任务,旨在提高视频语言模型的理解和推理能力。LLaVA-Video模型在多个视频基准测试中表现出色,证明了其数据集的有效性。
前沿级多模态大型语言模型,实现视觉-语言任务的先进性能。
NVLM 1.0是一系列前沿级的多模态大型语言模型(LLMs),在视觉-语言任务上取得了与领先专有模型和开放访问模型相媲美的先进成果。值得注意的是,NVLM 1.0在多模态训练后,其文本性能甚至超过了其LLM主干模型。我们为社区开源了模型权重和代码。
高效扩展多模态大型语言模型至1000图像
LongLLaVA是一个多模态大型语言模型,通过混合架构高效扩展至1000图像,旨在提升图像处理和理解能力。该模型通过创新的架构设计,实现了在大规模图像数据上的有效学习和推理,对于图像识别、分类和分析等领域具有重要意义。
多模态大型语言模型设计空间探索
EAGLE是一个面向视觉中心的高分辨率多模态大型语言模型(LLM)系列,通过混合视觉编码器和不同输入分辨率来加强多模态LLM的感知能力。该模型包含基于通道连接的'CLIP+X'融合,适用于具有不同架构(ViT/ConvNets)和知识(检测/分割/OCR/SSL)的视觉专家。EAGLE模型家族支持超过1K的输入分辨率,并在多模态LLM基准测试中取得了优异的成绩,特别是在对分辨率敏感的任务上,如光学字符识别和文档理解。
视频理解与推理的免训练大型语言模型。
SlowFast-LLaVA是一个无需训练的多模态大型语言模型,专为视频理解和推理设计。它无需在任何数据上进行微调,就能在多种视频问答任务和基准测试中达到与最先进视频大型语言模型相当甚至更好的性能。
视频理解领域的先进空间-时间建模与音频理解模型。
VideoLLaMA 2 是一个针对视频理解任务优化的大规模语言模型,它通过先进的空间-时间建模和音频理解能力,提升了对视频内容的解析和理解。该模型在多选视频问答和视频字幕生成等任务上展现了卓越的性能。
一种用于扩展多模态大型语言模型(LLMs)的先进架构。
CuMo是一种多模态大型语言模型(LLMs)的扩展架构,它通过在视觉编码器和MLP连接器中融入稀疏的Top-K门控专家混合(MoE)块,提高了模型的可扩展性,同时在推理时几乎不增加激活参数。CuMo在预训练MLP块后,初始化MoE块中的每个专家,并在视觉指令调整阶段使用辅助损失以确保专家的均衡负载。CuMo在各种VQA和视觉指令遵循基准测试中超越了其他同类模型,且完全基于开源数据集进行训练。
7B参数的大型语言模型,提升自然语言处理能力
OLMo 2 7B是由Allen Institute for AI (Ai2)开发的一款7B参数的大型语言模型,它在多个自然语言处理任务上展现出色的表现。该模型通过在大规模数据集上的训练,能够理解和生成自然语言,支持多种语言模型相关的科研和应用。OLMo 2 7B的主要优点包括其大规模的参数量,使得模型能够捕捉到更加细微的语言特征,以及其开源的特性,促进了学术界和工业界的进一步研究和应用。
高效长序列大型语言模型推理技术
Star-Attention是NVIDIA提出的一种新型块稀疏注意力机制,旨在提高基于Transformer的大型语言模型(LLM)在长序列上的推理效率。该技术通过两个阶段的操作显著提高了推理速度,同时保持了95-100%的准确率。它与大多数基于Transformer的LLM兼容,无需额外训练或微调即可直接使用,并且可以与其他优化方法如Flash Attention和KV缓存压缩技术结合使用,进一步提升性能。
视觉语言模型,能够进行逐步推理
LLaVA-o1是北京大学元组团队开发的一个视觉语言模型,它能够进行自发的、系统的推理,类似于GPT-o1。该模型在六个具有挑战性的多模态基准测试中超越了其他模型,包括Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-Vision-Instruct。LLaVA-o1通过逐步推理解决问题,展示了其在视觉语言模型中的独特优势。
123B参数的大型语言模型,具备先进推理和编码能力。
Mistral-Large-Instruct-2411是由Mistral AI提供的一款具有123B参数的大型语言模型,它在推理、知识、编码等方面具有最先进的能力。该模型支持多种语言,并在80多种编程语言上进行了训练,包括但不限于Python、Java、C、C++等。它以代理为中心,具备原生函数调用和JSON输出能力,是进行科研和开发的理想选择。
Qwen2.5-Coder系列的1.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、代码推理和代码修复而设计。基于强大的Qwen2.5,通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此模型是1.5B参数的指令调优版本,采用GGUF格式,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
数据驱动的框架,增强大型语言模型的工作流编排能力
WorkflowLLM是一个以数据为中心的框架,旨在增强大型语言模型(LLMs)在工作流编排方面的能力。核心是WorkflowBench,这是一个大规模的监督式微调数据集,包含来自83个应用、28个类别的1503个API的106763个样本。WorkflowLLM通过微调Llama-3.1-8B模型,创建了专门针对工作流编排任务优化的WorkflowLlama模型。实验结果表明,WorkflowLlama在编排复杂工作流方面表现出色,并且能够很好地泛化到未见过的API。
124B参数的多模态大型语言模型
Pixtral-Large-Instruct-2411是由Mistral AI研发的124B参数的大型多模态模型,基于Mistral Large 2构建,展现出前沿级别的图像理解能力。该模型不仅能够理解文档、图表和自然图像,同时保持了Mistral Large 2在文本理解方面的领先地位。它在MathVista、DocVQA、VQAv2等数据集上达到了最先进的性能,是科研和商业应用的强大工具。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-8b是一个基于预训练的Llama3.1-8B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以用于声码器产生语音输出。该模型在翻译评估中表现出色,且没有偏好调整,适用于语音代理、语音到语音翻译、语音分析等场景。
Hermes系列的最新版大型语言模型
Hermes 3是Nous Research公司推出的Hermes系列最新版大型语言模型(LLM),相较于Hermes 2,它在代理能力、角色扮演、推理、多轮对话、长文本连贯性等方面都有显著提升。Hermes系列模型的核心理念是将LLM与用户对齐,赋予终端用户强大的引导能力和控制权。Hermes 3在Hermes 2的基础上,进一步增强了功能调用和结构化输出能力,提升了通用助手能力和代码生成技能。
Nous Research推出的首款无限制AI聊天机器人
Nous Chat是AI研究组织Nous Research推出的首款面向用户的聊天机器人,它提供了对大型语言模型Hermes 3-70B的访问权限。Hermes 3-70B是Meta的Llama 3.1的一个变体,经过微调后,以ChatGPT等流行AI聊天工具的形式提供服务。该聊天机器人以其复古的设计语言和早期PC终端的字体和字符为特色,提供暗色和亮色模式供用户选择。尽管Nous Chat旨在允许用户部署和控制自己的AI模型,但它实际上设置了一些防护措施,包括禁止制造非法药物。此外,该模型的知识截止日期为2023年4月,因此在获取最新事件方面可能不如其他竞争对手有用。尽管如此,Nous Chat是一个有趣的实验,随着新功能的添加,它可能成为企业聊天机器人和AI模型的一个有吸引力的替代品。
跨平台通信协议,使不同的大型语言模型(LLMs)能够高效沟通。
Agora是一个简单的跨平台协议,允许异构的大型语言模型(LLMs)通过谈判高效地相互通信。该协议通过自然语言进行罕见通信,并为频繁通信协商出一种通信协议,通常涉及结构化数据(例如JSON)。一旦协议确定,它们将使用LLMs实现例程,即简单的脚本(例如Python),用于发送或接收数据。未来通信将使用这些例程处理,这意味着不再需要LLMs,从而实现了效率、多功能性和可移植性。
简单易用,释放AI的强大力量
5ire是一个以简洁和用户友好为核心的AI产品,旨在让即使是初学者也能轻松利用大型语言模型。它支持多种文档格式的解析和向量化,具备本地知识库、使用分析、提示库、书签和快速关键词搜索等功能。作为一个开源项目,5ire提供免费下载,并且提供了按需付费的大型语言模型API服务。
O1复制之旅:战略进展报告第一部分
O1-Journey是由上海交通大学GAIR研究组发起的一个项目,旨在复制和重新想象OpenAI的O1模型的能力。该项目提出了“旅程学习”的新训练范式,并构建了首个成功整合搜索和学习在数学推理中的模型。这个模型通过试错、纠正、回溯和反思等过程,成为处理复杂推理任务的有效方法。
基于Llama-3-8B的多模态大型语言模型,专注于UI任务。
Ferret-UI是首个以用户界面为中心的多模态大型语言模型(MLLM),专为指代表达、定位和推理任务设计。它基于Gemma-2B和Llama-3-8B构建,能够执行复杂的用户界面任务。这个版本遵循了Apple的研究论文,是一个强大的工具,可以用于图像文本到文本的任务,并且在对话和文本生成方面具有优势。
Agent S:一个开放的代理框架,让计算机像人类一样使用计算机。
Agent S是一个开放的代理框架,旨在通过图形用户界面(GUI)实现与计算机的自主交互,通过自动化复杂多步骤任务来转变人机交互。它引入了经验增强的分层规划方法,利用在线网络知识和叙事记忆,从过去的交互中提取高级经验,将复杂任务分解为可管理的子任务,并使用情景记忆进行逐步指导,Agent S不断优化其行动并从经验中学习,实现适应性强且有效的任务规划。Agent S在OSWorld基准测试中的表现超过了基线9.37%的成功率(相对提高了83.6%),并在WindowsAgentArena基准测试中展示了广泛的通用性。
在线URL解析器,将URL转换为适合大型语言模型的输入格式。
URL Parser Online是一个在线工具,它能够将复杂的URL转换为适合大型语言模型(LLMs)使用的输入格式。这项技术的重要性在于它能够帮助开发者和研究人员更有效地处理和解析URL数据,尤其是在进行网页内容分析和数据抽取时。产品背景信息显示,随着互联网数据量的爆炸式增长,对URL的解析和处理需求日益增加。URL Parser Online以其简洁的用户界面和高效的解析能力,为用户提供了一个便捷的解决方案。该产品目前提供免费服务,定位于开发者和数据分析师。
SELA通过结合蒙特卡洛树搜索和基于LLM的代理来增强自动化机器学习。
SELA是一个创新系统,它通过将蒙特卡洛树搜索(MCTS)与基于大型语言模型(LLM)的代理结合起来,增强了自动化机器学习(AutoML)。传统的AutoML方法经常产生低多样性和次优的代码,限制了它们在模型选择和集成方面的有效性。SELA通过将管道配置表示为树,使代理能够智能地探索解决方案空间,并根据实验反馈迭代改进其策略。
基于多模态大语言模型的可解释图像检测与定位
FakeShield是一个多模态框架,旨在解决图像检测和定位(IFDL)领域中的两个主要挑战:检测原理的黑箱性和在不同篡改方法间的有限泛化能力。FakeShield通过利用GPT-4o增强现有的IFDL数据集,创建了多模态篡改描述数据集(MMTD-Set),用于训练FakeShield的篡改分析能力。该框架包括领域标签引导的可解释检测模块(DTE-FDM)和定位模块(MFLM),能够处理各种类型的篡改检测解释,并实现由详细文本描述引导的定位。FakeShield在检测准确性和F1分数上优于其他方法,提供了一个可解释且优越的解决方案。
1位大型语言模型推理框架
BitNet是由微软开发的官方推理框架,专为1位大型语言模型(LLMs)设计。它提供了一套优化的核心,支持在CPU上进行快速且无损的1.58位模型推理(NPU和GPU支持即将推出)。BitNet在ARM CPU上实现了1.37倍到5.07倍的速度提升,能效比提高了55.4%到70.0%。在x86 CPU上,速度提升范围从2.37倍到6.17倍,能效比提高了71.9%到82.2%。此外,BitNet能够在单个CPU上运行100B参数的BitNet b1.58模型,实现接近人类阅读速度的推理速度,拓宽了在本地设备上运行大型语言模型的可能性。
由NVIDIA定制的大型语言模型,提升查询回答的帮助性。
Llama-3.1-Nemotron-70B-Instruct是NVIDIA定制的大型语言模型,专注于提升大型语言模型(LLM)生成回答的帮助性。该模型在多个自动对齐基准测试中表现优异,例如Arena Hard、AlpacaEval 2 LC和GPT-4-Turbo MT-Bench。它通过使用RLHF(特别是REINFORCE算法)、Llama-3.1-Nemotron-70B-Reward和HelpSteer2-Preference提示在Llama-3.1-70B-Instruct模型上进行训练。此模型不仅展示了NVIDIA在提升通用领域指令遵循帮助性方面的技术,还提供了与HuggingFace Transformers代码库兼容的模型转换格式,并可通过NVIDIA的build平台进行免费托管推理。
© 2024 AIbase 备案号:闽ICP备08105208号-14