需求人群:
"Jockey主要面向需要处理复杂视频工作流程的开发者和团队,尤其是那些希望利用大型语言模型来增强视频内容创作和编辑流程的用户。它适合需要高度自定义和自动化视频处理任务的专业用户。"
使用场景示例:
视频编辑团队使用Jockey自动化视频剪辑和字幕生成。
内容创作者利用Jockey生成视频草稿和故事板。
教育机构使用Jockey创建交互式视频教程。
产品特色:
结合大型语言模型与视频处理API进行复杂视频工作流程的负载分配。
使用LangGraph进行任务分配,提高视频处理效率。
通过LLMs逻辑规划执行步骤,增强用户交互体验。
无需中介表示,直接利用视频基础模型处理视频任务。
支持自定义和扩展,以适应不同的视频相关用例。
提供终端和LangGraph API服务器部署选项,灵活适应开发和测试需求。
使用教程:
1. 安装必要的外部依赖,如FFMPEG、Docker和Docker Compose。
2. 克隆Jockey的GitHub仓库到本地环境。
3. 创建并激活Python虚拟环境,安装所需的Python包。
4. 配置.env文件,添加必要的API密钥和环境变量。
5. 使用Docker Compose部署Jockey API服务器。
6. 通过终端运行Jockey实例进行测试或使用LangGraph API服务器进行端到端部署。
7. 使用LangGraph Debugger UI进行调试和端到端测试。
浏览量:44
最新流量情况
月访问量
4.85m
平均访问时长
00:06:25
每次访问页数
6.08
跳出率
35.86%
流量来源
直接访问
52.62%
自然搜索
32.72%
邮件
0.05%
外链引荐
12.34%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
对话式视频代理,结合大型语言模型与视频处理API。
Jockey是一个基于Twelve Labs API和LangGraph构建的对话式视频代理。它将现有的大型语言模型(Large Language Models, LLMs)的能力与Twelve Labs的API结合使用,通过LangGraph进行任务分配,将复杂视频工作流程的负载分配给适当的基础模型。LLMs用于逻辑规划执行步骤并与用户交互,而与视频相关的任务则传递给由视频基础模型(Video Foundation Models, VFMs)支持的Twelve Labs API,以原生方式处理视频,无需像预先生成的字幕这样的中介表示。
大型语言模型,支持指令式对话和功能调用。
Mistral-7B-Instruct-v0.3是由Mistral AI Team开发的大型语言模型,它是Mistral-7B-v0.3的指令式微调版本。该模型具有扩展的词汇量、支持v3 Tokenizer和功能调用。它能够通过指令式对话和功能调用来生成文本,适合于需要交互式对话和自动化任务的场景。
基于大型语言模型的智能代理研究
xLAM是一个由Salesforce AI Research团队开发的基于大型语言模型(Large Language Models, LLMs)的智能代理研究项目。它通过聚合来自不同环境的智能代理轨迹,标准化并统一这些轨迹到一致的格式,以创建一个优化的通用数据加载器,专门用于智能代理的训练。xLAM-v0.1-r是此模型系列的0.1版本,专为研究目的设计,与VLLM和FastChat平台兼容。
多语言大型语言模型,优化对话场景。
Meta Llama 3.1是一系列多语言的大型预训练和指令调整的生成模型,包含8B、70B和405B大小的版本。这些模型专为多语言对话用例而优化,并在常见行业基准测试中表现优于许多开源和闭源聊天模型。模型使用优化的transformer架构,并通过监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调整,以符合人类对有用性和安全性的偏好。
结合视觉语音处理与大型语言模型的框架
VSP-LLM是一个结合视觉语音处理(Visual Speech Processing)与大型语言模型(LLMs)的框架,旨在通过LLMs的强大能力最大化上下文建模能力。VSP-LLM设计用于执行视觉语音识别和翻译的多任务,通过自监督视觉语音模型将输入视频映射到LLM的输入潜在空间。该框架通过提出一种新颖的去重方法和低秩适配器(LoRA),可以高效地进行训练。
基于大型语言模型的主动式代理,预测用户需求并主动提供帮助。
ProactiveAgent是一个基于大型语言模型(LLM)的主动式代理项目,旨在构建一个能够预测用户需求并主动提供帮助的智能代理。该项目通过数据收集和生成管道、自动评估器和训练代理来实现这一目标。ProactiveAgent的主要优点包括环境感知、协助标注、动态数据生成和构建管道,其奖励模型在测试集上达到了0.918的F1分数,显示出良好的性能。该产品背景信息显示,它适用于编程、写作和日常生活场景,并且遵循Apache License 2.0协议。
基于特定模型的量化大型语言模型,适用于自然语言处理等任务。
该模型是量化版大型语言模型,采用4位量化技术,降低存储与计算需求,适用于自然语言处理,参数量8.03B,免费且可用于非商业用途,适合资源受限环境下高性能语言应用需求者。
基于Qwen2.5-Coder系列的大型语言模型,专注于代理应用。
Dria-Agent-a-3B是一个基于Qwen2.5-Coder系列的大型语言模型,专注于代理应用。它采用Pythonic函数调用方式,具有单次并行多函数调用、自由形式推理和动作以及即时复杂解决方案生成等优势。该模型在多个基准测试中表现出色,如Berkeley Function Calling Leaderboard (BFCL)、MMLU-Pro和Dria-Pythonic-Agent-Benchmark (DPAB)。模型大小为3.09B参数,支持BF16张量类型。
7B参数的大型语言模型,提升自然语言处理能力
OLMo 2 7B是由Allen Institute for AI (Ai2)开发的一款7B参数的大型语言模型,它在多个自然语言处理任务上展现出色的表现。该模型通过在大规模数据集上的训练,能够理解和生成自然语言,支持多种语言模型相关的科研和应用。OLMo 2 7B的主要优点包括其大规模的参数量,使得模型能够捕捉到更加细微的语言特征,以及其开源的特性,促进了学术界和工业界的进一步研究和应用。
为语言模型和AI代理提供视频处理服务,支持多种视频来源。
Deeptrain 是一个专注于视频处理的平台,旨在将视频内容无缝集成到语言模型和AI代理中。通过其强大的视频处理技术,用户可以像使用文本和图像一样轻松地利用视频内容。该产品支持超过200种语言模型,包括GPT-4o、Gemini等,并且支持多语言视频处理。Deeptrain 提供免费的开发支持,仅在生产环境中使用时才收费,这使得它成为开发AI应用的理想选择。其主要优点包括强大的视频处理能力、多语言支持以及与主流语言模型的无缝集成。
多语言大型语言模型,优化对话和文本生成。
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种大小的模型,专门针对多语言对话使用案例进行了优化,并在行业基准测试中表现优异。该模型使用优化的transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进一步与人类偏好对齐,以确保其有用性和安全性。
基于大型多模态模型构建端到端网络代理
WebVoyager是一款创新的大型多模态模型(LMM)驱动的网络代理,能够通过与现实世界的网站交互,端到端完成用户指令。我们提出了一种新的网络代理评估协议,以解决开放式网络代理任务的自动评估挑战,利用GPT-4V的强大多模态理解能力。我们从15个广泛使用的网站收集了真实世界任务,用于评估我们的代理。我们展示了WebVoyager实现了55.7%的任务成功率,明显超过了GPT-4(所有工具)和WebVoyager(仅文本)设置的性能,突显了WebVoyager在实际应用中的卓越能力。我们发现我们提出的自动评估与人类判断达成了85.3%的一致性,为在真实世界环境中进一步发展网络代理铺平了道路。
多模态大型语言模型,支持图像和文本处理。
Llama-3.2-11B-Vision 是 Meta 发布的一款多模态大型语言模型(LLMs),它结合了图像和文本处理的能力,旨在提高视觉识别、图像推理、图像描述和回答有关图像的一般问题的性能。该模型在常见的行业基准测试中的表现超过了众多开源和封闭的多模态模型。
处理长文本的大型语言模型
LongLLaMA 是一个大型语言模型,能够处理长篇文本。它基于 OpenLLaMA,并使用 Focused Transformer (FoT) 方法进行了微调。它能够处理长达 256k 标记甚至更多的文本。我们提供了一个较小的 3B 基础模型(未经过指令调整),并在 Hugging Face 上提供了支持更长上下文的推断代码。我们的模型权重可以作为现有实现中 LLaMA 的替代品(适用于最多 2048 个标记的短上下文)。此外,我们还提供了评估结果和与原始 OpenLLaMA 模型的比较。
视频理解与推理的免训练大型语言模型。
SlowFast-LLaVA是一个无需训练的多模态大型语言模型,专为视频理解和推理设计。它无需在任何数据上进行微调,就能在多种视频问答任务和基准测试中达到与最先进视频大型语言模型相当甚至更好的性能。
多语言对话生成模型
Meta Llama 3.1系列模型是一套预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种规模的模型,专为多语言对话使用案例优化,性能优于许多开源和闭源聊天模型。
先进的多模态大型语言模型
InternVL2_5-2B-MPO是一个多模态大型语言模型系列,展示了卓越的整体性能。该系列基于InternVL2.5和混合偏好优化构建。它集成了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型在多模态任务中表现出色,能够处理包括图像和文本在内的多种数据类型,适用于需要理解和生成多模态内容的场景。
视频生成的大型语言模型
VideoPoet 是一个大型语言模型,可将任何自回归语言模型转换为高质量视频生成器。它可以根据输入的文本描述生成视频,无需任何视觉或音频指导。VideoPoet 能够生成各种类型的视频,包括文本到视频、图像到视频、视频编辑、风格化和修复等。它可以用于电影制作、动画片、广告制作、虚拟现实等领域。VideoPoet 具有高质量的视频生成能力,并且可以灵活应用于不同的场景。
一个基于Qwen2.5-Coder系列训练的大型语言模型,专注于代理应用。
Dria-Agent-a-7B是一个基于Qwen2.5-Coder系列训练的大型语言模型,专注于代理应用。它采用Pythonic函数调用方式,与传统JSON函数调用方法相比,具有单次并行多函数调用、自由形式推理和动作以及即时复杂解决方案生成等优势。该模型在多个基准测试中表现出色,包括Berkeley Function Calling Leaderboard (BFCL)、MMLU-Pro和Dria-Pythonic-Agent-Benchmark (DPAB)。模型大小为76.2亿参数,采用BF16张量类型,支持文本生成任务。其主要优点包括强大的编程辅助能力、高效的函数调用方式以及在特定领域的高准确率。该模型适用于需要复杂逻辑处理和多步骤任务执行的应用场景,如自动化编程、智能代理等。目前,该模型在Hugging Face平台上提供,供用户免费使用。
探索大型语言模型作为编程辅导工具的潜力,提出Trace-and-Verify工作流。
Coding-Tutor是一个基于大型语言模型(LLM)的编程辅导工具,旨在通过对话式交互帮助学习者提升编程能力。它通过Trace-and-Verify(Traver)工作流,结合知识追踪和逐轮验证,解决编程辅导中的关键挑战。该工具不仅适用于编程教育,还可扩展到其他任务辅导场景,帮助根据学习者的知识水平调整教学内容。项目开源,支持社区贡献。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
世界顶尖的开源大型语言模型
Reflection Llama-3.1 70B 是目前世界上顶尖的开源大型语言模型(LLM),采用名为 Reflection-Tuning 的新技术进行训练,使模型能够检测其推理中的错误并进行修正。该模型在合成数据上进行了训练,这些数据由 Glaive 生成。对于正在训练模型的用户来说,Glaive 是一个非常出色的工具。该模型使用标准的 Llama 3.1 聊天格式,通过特殊的标签来区分模型的内部思考和最终答案,从而提升用户体验。
多模态大型模型,处理文本、图像和视频数据
Valley是由字节跳动开发的尖端多模态大型模型,能够处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,比其他开源模型表现更优。在OpenCompass测试中,与同规模模型相比,平均得分大于等于67.40,在小于10B模型中排名第二。Valley-Eagle版本参考了Eagle,引入了一个可以灵活调整令牌数量并与原始视觉令牌并行的视觉编码器,增强了模型在极端场景下的性能。
先进的多模态大型语言模型系列
InternVL 2.5是OpenGVLab推出的多模态大型语言模型系列,它在InternVL 2.0的基础上进行了显著的训练和测试策略增强,以及数据质量提升。该模型系列能够处理图像、文本和视频数据,具备多模态理解和生成的能力,是当前多模态人工智能领域的前沿产品。InternVL 2.5系列模型以其高性能和开源特性,为多模态任务提供了强大的支持。
大型语言模型的详细列表和信息
Models Table 提供了一个包含300多个大型语言模型的列表,这些模型被所有主要的AI实验室使用,包括Amazon Olympus, OpenAI GPT-5, OpenAI GPT-6等。该列表展示了大型语言模型的发展趋势和多样性,对于AI研究者和开发者来说是一个宝贵的资源。
专为角色扮演优化的大型语言模型
Higgs-Llama-3-70B是一个基于Meta-Llama-3-70B的后训练模型,特别针对角色扮演进行了优化,同时在通用领域指令执行和推理方面保持竞争力。该模型通过监督式微调,结合人工标注者和私有大型语言模型构建偏好对,进行迭代偏好优化以对齐模型行为,使其更贴近系统消息。与其它指令型模型相比,Higgs模型更紧密地遵循其角色。
大型语言模型,支持多种参数规模
Meta Llama 3 是 Meta 推出的最新大型语言模型,旨在为个人、创作者、研究人员和各类企业解锁大型语言模型的能力。该模型包含从8B到70B参数的不同规模版本,支持预训练和指令调优。模型通过 GitHub 仓库提供,用户可以通过下载模型权重和分词器进行本地推理。Meta Llama 3 的发布标志着大型语言模型技术的进一步普及和应用,具有广泛的研究和商业潜力。
开放的语言代理基础模型
Lemur是一个开放的语言模型,旨在为语言代理提供优化的自然语言和编码能力。它平衡了自然语言和编码技能,使代理能够遵循指令、推理任务并采取实际行动。Lemur结合了自然语言和编码的优势,通过两阶段训练产生了在不同语言和编码基准上的最先进性能,超过了其他可用的开源模型,并缩小了开源模型和商业模型在代理能力上的差距。
© 2025 AIbase 备案号:闽ICP备08105208号-14