需求人群:
"VideoPoet 适用于需要根据文本描述生成视频的场景,如电影制作、动画片制作、广告制作等。它还可以用于虚拟现实和增强现实应用,为用户提供高质量的视频体验。"
产品特色:
将文本描述转换为视频
生成高质量的视频内容
支持文本到视频、图像到视频、视频编辑、风格化和修复等功能
灵活应用于电影制作、动画片、广告制作、虚拟现实等领域
浏览量:4879
最新流量情况
月访问量
159.47k
平均访问时长
00:01:16
每次访问页数
2.35
跳出率
56.61%
流量来源
直接访问
35.43%
自然搜索
52.16%
邮件
0.08%
外链引荐
8.54%
社交媒体
3.27%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
德国
3.89%
西班牙
3.50%
英国
5.94%
印度
7.61%
美国
31.25%
视频生成的大型语言模型
VideoPoet 是一个大型语言模型,可将任何自回归语言模型转换为高质量视频生成器。它可以根据输入的文本描述生成视频,无需任何视觉或音频指导。VideoPoet 能够生成各种类型的视频,包括文本到视频、图像到视频、视频编辑、风格化和修复等。它可以用于电影制作、动画片、广告制作、虚拟现实等领域。VideoPoet 具有高质量的视频生成能力,并且可以灵活应用于不同的场景。
创新的AI视频生成器,快速实现创意视频。
Luma AI的Dream Machine是一款AI视频生成器,它利用先进的AI技术,将用户的想法转化为高质量、逼真的视频。它支持从文字描述或图片开始生成视频,具有高度的可扩展性、快速生成能力和实时访问功能。产品界面用户友好,适合专业人士和创意爱好者使用。Luma AI的Dream Machine不断更新,以保持技术领先,为用户提供持续改进的视频生成体验。
基于 AI 技术生成视频内容的智能服务。
清影 AI 视频生成服务是一个创新的人工智能平台,旨在通过智能算法生成高质量的视频内容。该服务适合各种行业用户,能够快速便捷地生成富有创意的视觉内容。无论是商业广告、教育课程还是娱乐视频,清影 AI 都能提供优质的解决方案。该产品依托于先进的 GLM 大模型,确保生成内容的准确性与丰富性,同时满足用户个性化需求。提供免费试用,鼓励用户探索 AI 视频创作的无限可能。
Freepik AI 视频生成器,基于人工智能技术快速生成高质量视频内容。
Freepik AI 视频生成器是一款基于人工智能技术的在线工具,能够根据用户输入的初始图像或描述快速生成视频。该技术利用先进的 AI 算法,实现视频内容的自动化生成,极大地提高了视频创作的效率。产品定位为创意设计人员和视频制作者提供快速、高效的视频生成解决方案,帮助用户节省时间和精力。目前该工具处于 Beta 测试阶段,用户可以免费试用其功能。
通过文本生成高质量AI视频
Sora视频生成器是一个可以通过文本生成高质量AI视频的在线网站。用户只需要输入想要生成视频的文本描述,它就可以使用OpenAI的Sora AI模型,转换成逼真的视频。网站还提供了丰富的视频样例,详细的使用指南和定价方案等。
利用AI技术快速生成视频内容
AI视频生成神器是一款利用人工智能技术,将图片或文字转换成视频内容的在线工具。它通过深度学习算法,能够理解图片和文字的含义,自动生成具有吸引力的视频内容。这种技术的应用,极大地降低了视频制作的成本和门槛,使得普通用户也能轻松制作出专业级别的视频。产品背景信息显示,随着社交媒体和视频平台的兴起,用户对视频内容的需求日益增长,而传统的视频制作方式成本高、耗时长,难以满足快速变化的市场需求。AI视频生成神器的出现,正好填补了这一市场空白,为用户提供了一种快速、低成本的视频制作解决方案。目前,该产品提供免费试用,具体价格需要在网站上查询。
内容一致的多场景视频生成
VideoDrafter 是一个内容一致的多场景视频生成框架。它利用大型语言模型(LLM)将输入提示转换为包含多场景脚本的综合脚本,脚本包括描述事件、前景 / 背景实体以及相机运动的提示。VideoDrafter 识别脚本中的共同实体,并要求 LLM 对每个实体进行详细描述。然后,将每个实体的描述输入到文本到图像模型中,以生成每个实体的参考图像。最后,通过考虑参考图像、事件描述和相机运动,通过扩散过程生成多场景视频,扩散模型将参考图像作为条件和对齐进行处理,以增强多场景视频的内容一致性。
开源视频生成模型
Mochi 1 是 Genmo 公司推出的一款研究预览版本的开源视频生成模型,它致力于解决当前AI视频领域的基本问题。该模型以其无与伦比的运动质量、卓越的提示遵循能力和跨越恐怖谷的能力而著称,能够生成连贯、流畅的人类动作和表情。Mochi 1 的开发背景是响应对高质量视频内容生成的需求,特别是在游戏、电影和娱乐行业中。产品目前提供免费试用,具体定价信息未在页面中提供。
控制视频生成模型
传统的3D内容创作工具赋予用户直接控制场景的几何形状、外观、动作和摄像机路径,从而将他们的想象变为现实。然而,创建计算机生成的视频是一个繁琐的手动过程,可以通过新兴的文本到视频扩散模型实现自动化。尽管前景广阔,视频扩散模型难以控制,限制了用户应用自己的创造力,而不是放大它。为了解决这一挑战,我们提出了一种新颖的方法,将动态3D网格的可控性与新兴扩散模型的表现力和可编辑性相结合。为此,我们的方法以动画化的低保真度渲染网格作为输入,并将从动态网格获得的地面真实对应信息注入预训练的文本到图像生成模型的各个阶段,以输出高质量和时间一致的帧。我们在各种示例上演示了我们的方法,其中动作可以通过对绑定资产进行动画化或改变摄像机路径来获得。
利用AI技术,将文字和图像转化为创意视频。
通义万相AI创意作画是一款利用人工智能技术,将用户的文字描述或图像转化为视频内容的产品。它通过先进的AI算法,能够理解用户的创意意图,自动生成具有艺术感的视频。该产品不仅能够提升内容创作的效率,还能激发用户的创造力,适用于广告、教育、娱乐等多个领域。
视频理解与推理的免训练大型语言模型。
SlowFast-LLaVA是一个无需训练的多模态大型语言模型,专为视频理解和推理设计。它无需在任何数据上进行微调,就能在多种视频问答任务和基准测试中达到与最先进视频大型语言模型相当甚至更好的性能。
使用简单的提示和图像生成视频片段。
Adobe Firefly 是一款基于人工智能技术的视频生成工具。它能够根据用户提供的简单提示或图像快速生成高质量的视频片段。该技术利用先进的 AI 算法,通过对大量视频数据的学习和分析,实现自动化的视频创作。其主要优点包括操作简单、生成速度快、视频质量高。Adobe Firefly 面向创意工作者、视频制作者以及需要快速生成视频内容的用户,提供高效、便捷的视频创作解决方案。目前该产品处于 Beta 测试阶段,用户可以免费使用,未来可能会根据市场需求和产品发展进行定价和定位。
对话式视频代理,结合大型语言模型与视频处理API。
Jockey是一个基于Twelve Labs API和LangGraph构建的对话式视频代理。它将现有的大型语言模型(Large Language Models, LLMs)的能力与Twelve Labs的API结合使用,通过LangGraph进行任务分配,将复杂视频工作流程的负载分配给适当的基础模型。LLMs用于逻辑规划执行步骤并与用户交互,而与视频相关的任务则传递给由视频基础模型(Video Foundation Models, VFMs)支持的Twelve Labs API,以原生方式处理视频,无需像预先生成的字幕这样的中介表示。
大规模视频生成扩散模型
Sora是一个基于大规模训练的文本控制视频生成扩散模型。它能够生成长达1分钟的高清视频,涵盖广泛的视觉数据类型和分辨率。Sora通过在视频和图像的压缩潜在空间中训练,将其分解为时空位置补丁,实现了可扩展的视频生成。Sora还展现出一些模拟物理世界和数字世界的能力,如三维一致性和交互,揭示了继续扩大视频生成模型规模来发展高能力模拟器的前景。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
腾讯开源的大型视频生成模型训练框架
HunyuanVideo是腾讯开源的一个系统性框架,用于训练大型视频生成模型。该框架通过采用数据策划、图像-视频联合模型训练和高效的基础设施等关键技术,成功训练了一个超过130亿参数的视频生成模型,是所有开源模型中最大的。HunyuanVideo在视觉质量、运动多样性、文本-视频对齐和生成稳定性方面表现出色,超越了包括Runway Gen-3、Luma 1.6在内的多个行业领先模型。通过开源代码和模型权重,HunyuanVideo旨在缩小闭源和开源视频生成模型之间的差距,推动视频生成生态系统的活跃发展。
文本到视频生成的开源模型,性能卓越。
Open-Sora-Plan是一个由北京大学元组团队开发的文本到视频生成模型。它在2024年4月首次推出v1.0.0版本,以其简单高效的设计和显著的性能在文本到视频生成领域获得了广泛认可。v1.1.0版本在视频生成质量和持续时间上进行了显著改进,包括更优的压缩视觉表示、更高的生成质量和更长的视频生成能力。该模型采用了优化的CausalVideoVAE架构,具有更强的性能和更高的推理效率。此外,它还保持了v1.0.0版本的极简设计和数据效率,并且与Sora基础模型的性能相似,表明其版本演进与Sora展示的扩展法则一致。
视频生成的前沿模型
WorldDreamer是一个创新的视频生成模型,它通过预测遮蔽的视觉令牌来理解并模拟世界动态。它在图像到视频合成、文本到视频生成、视频修复、视频风格化以及动作到视频生成等多个方面表现出色。该模型借鉴了大型语言模型的成功经验,将世界建模视为一个无监督的视觉序列建模挑战,通过将视觉输入映射到离散的令牌并预测被遮蔽的令牌来实现。
高效率自回归视频生成模型
Pyramid Flow miniFLUX是一个基于流匹配的自回归视频生成方法,专注于训练效率和开源数据集的使用。该模型能够生成高质量的10秒768p分辨率、24帧每秒的视频,并自然支持图像到视频的生成。它是视频内容创作和研究领域的一个重要工具,尤其在需要生成连贯动态图像的场合。
AI驱动的视频生成工具,一键生成高质量营销视频
小视频宝(ClipTurbo)是一个AI驱动的视频生成工具,旨在帮助用户轻松创建高质量的营销视频。该工具利用AI技术处理文案、翻译、图标匹配和TTS语音合成,最终使用manim渲染视频,避免了纯生成式AI被平台限流的问题。小视频宝支持多种模板,用户可以根据需要选择分辨率、帧率、宽高比或屏幕方向,模板将自动适配。此外,它还支持多种语音服务,包括内置的EdgeTTS语音。目前,小视频宝仍处于早期开发阶段,仅提供给三花AI的注册用户。
多语言大型语言模型,支持多领域文本生成。
XVERSE-MoE-A36B是由深圳元象科技自主研发的多语言大型语言模型,采用混合专家模型(MoE)架构,具有2554亿的总参数规模和360亿的激活参数量。该模型支持包括中、英、俄、西等40多种语言,特别在中英双语上表现优异。模型使用8K长度的训练样本,并通过精细化的数据采样比例和动态数据切换策略,保证了模型的高质量和多样性。此外,模型还针对MoE架构进行了定制优化,提升了计算效率和整体吞吐量。
大型视频-语言模型,提供视觉问答和视频字幕生成。
VideoLLaMA2-7B是由DAMO-NLP-SG团队开发的多模态大型语言模型,专注于视频内容的理解和生成。该模型在视觉问答和视频字幕生成方面具有显著的性能,能够处理复杂的视频内容,并生成准确、自然的语言描述。它在空间-时间建模和音频理解方面进行了优化,为视频内容的智能分析和处理提供了强大的支持。
文本图像到视频生成模型
Allegro-TI2V是一个文本图像到视频生成模型,它能够根据用户提供的提示和图像生成视频内容。该模型以其开源性、多样化的内容创作能力、高质量的输出、小巧高效的模型参数以及支持多种精度和GPU内存优化而受到关注。它代表了当前人工智能技术在视频生成领域的前沿进展,具有重要的技术价值和商业应用潜力。Allegro-TI2V模型在Hugging Face平台上提供,遵循Apache 2.0开源协议,用户可以免费下载和使用。
大型语言模型,高效文本生成。
InternLM2.5-7B-Chat GGUF是一个大型语言模型,专为文本生成而设计。它基于开源框架llama.cpp,支持多种硬件平台的本地和云推理。该模型具有7.74亿参数,采用先进的架构设计,能够提供高质量的文本生成服务。
一个开源的视频生成模型,用于创造生动的视频内容。
CogVideoX-2B是一个开源的视频生成模型,由清华大学团队开发。它支持使用英语提示语言生成视频,具有36GB的推理GPU内存需求,并且可以生成6秒长、每秒8帧、分辨率为720*480的视频。该模型使用正弦位置嵌入,目前不支持量化推理和多卡推理。它基于Hugging Face的diffusers库进行部署,能够根据文本提示生成视频,具有高度的创造性和应用潜力。
视频生成模型,支持无限长度高保真虚拟人视频生成
MuseV是一个基于扩散模型的虚拟人视频生成框架,支持无限长度视频生成,采用了新颖的视觉条件并行去噪方案。它提供了预训练的虚拟人视频生成模型,支持Image2Video、Text2Image2Video、Video2Video等功能,兼容Stable Diffusion生态系统,包括基础模型、LoRA、ControlNet等。它支持多参考图像技术,如IPAdapter、ReferenceOnly、ReferenceNet、IPAdapterFaceID等。MuseV的优势在于可生成高保真无限长度视频,定位于视频生成领域。
支持同时理解和生成图像的多模态大型语言模型
Mini-Gemini是一个多模态视觉语言模型,支持从2B到34B的系列密集和MoE大型语言模型,同时具备图像理解、推理和生成能力。它基于LLaVA构建,利用双视觉编码器提供低分辨率视觉嵌入和高分辨率候选区域,采用补丁信息挖掘在高分辨率区域和低分辨率视觉查询之间进行补丁级挖掘,将文本与图像融合用于理解和生成任务。支持包括COCO、GQA、OCR-VQA、VisualGenome等多个视觉理解基准测试。
高效为大型语言模型提供服务
FP6-LLM是一种用于大型语言模型的全新支持方案,通过六位量化(FP6)有效地减小了模型大小,并在各种应用中始终保持模型质量。我们提出了TC-FPx,这是第一个完整的GPU内核设计方案,统一支持各种量化位宽的浮点权重。我们将TC-FPx内核集成到现有推理系统中,为量化的LLM推理提供了全新的端到端支持(称为FP6-LLM),实现了推理成本和模型质量之间更好的权衡。实验证明,FP6-LLM使得使用单个GPU进行LLaMA-70b推理成为可能,实现的规范化推理吞吐量比FP16基准高1.69倍至2.65倍。
© 2025 AIbase 备案号:闽ICP备08105208号-14