需求人群:
"该产品适合需要构建交互式聊天机器人、自动化客服系统或需要自然语言处理的应用程序的开发者和企业。它的强大功能和灵活性使其成为提高用户体验和工作效率的理想选择。"
使用场景示例:
用于构建一个能够回答用户问题的在线客服机器人。
集成到一个教育应用中,以提供个性化的学习辅导和问题解答。
作为企业内部知识库的查询助手,帮助员工快速找到所需信息。
产品特色:
支持32768个词汇的扩展词汇量。
兼容v3 Tokenizer,提高了模型的兼容性和效率。
支持功能调用,能够执行特定的API调用。
通过指令式对话生成文本,提高交互性。
可以与Hugging Face的transformers库结合使用,方便集成。
模型具备快速演示能力,易于微调以适应不同需求。
使用教程:
首先,从Hugging Face Hub下载Mistral-7B-Instruct-v0.3模型。
安装必要的依赖库,如mistral-inference和transformers。
使用提供的代码示例或API,初始化模型并设置对话环境。
根据需求,编写指令或调用特定功能,与模型进行交互。
获取模型生成的文本输出,并将其集成到应用程序中。
根据反馈调整模型参数,优化对话效果和功能表现。
浏览量:85
最新流量情况
月访问量
23904.81k
平均访问时长
00:04:51
每次访问页数
5.82
跳出率
43.33%
流量来源
直接访问
48.28%
自然搜索
35.88%
邮件
0.03%
外链引荐
12.71%
社交媒体
3.06%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
大型语言模型,支持指令式对话和功能调用。
Mistral-7B-Instruct-v0.3是由Mistral AI Team开发的大型语言模型,它是Mistral-7B-v0.3的指令式微调版本。该模型具有扩展的词汇量、支持v3 Tokenizer和功能调用。它能够通过指令式对话和功能调用来生成文本,适合于需要交互式对话和自动化任务的场景。
对话式视频代理,结合大型语言模型与视频处理API。
Jockey是一个基于Twelve Labs API和LangGraph构建的对话式视频代理。它将现有的大型语言模型(Large Language Models, LLMs)的能力与Twelve Labs的API结合使用,通过LangGraph进行任务分配,将复杂视频工作流程的负载分配给适当的基础模型。LLMs用于逻辑规划执行步骤并与用户交互,而与视频相关的任务则传递给由视频基础模型(Video Foundation Models, VFMs)支持的Twelve Labs API,以原生方式处理视频,无需像预先生成的字幕这样的中介表示。
高级工具使用和功能调用的8B参数语言模型
Llama-3-Groq-8B-Tool-Use模型是为高级工具使用和功能调用任务特别设计的8B参数因果语言模型。该模型经过优化的变换器架构,通过完全微调和直接偏好优化(DPO)在Llama 3 8B基础模型上进行训练。它在涉及API交互、结构化数据操作和复杂工具使用的任务中表现出色。然而,用户应注意,该模型可能在某些情况下产生不准确或有偏见的内容,并且用户需要为其特定用例实施适当的安全措施。
一款专为中英文用户定制的指令式语言模型。
Llama3.1-8B-Chinese-Chat是一个基于Meta-Llama-3.1-8B-Instruct模型的指令式调优语言模型,专为中文和英文用户设计,具有角色扮演和工具使用等多种能力。该模型通过ORPO算法进行微调,显著减少了中文问题用英文回答和回答中中英文混合的问题,特别是在角色扮演、功能调用和数学能力方面有显著提升。
多语言大型语言模型,优化对话场景。
Meta Llama 3.1是一系列多语言的大型预训练和指令调整的生成模型,包含8B、70B和405B大小的版本。这些模型专为多语言对话用例而优化,并在常见行业基准测试中表现优于许多开源和闭源聊天模型。模型使用优化的transformer架构,并通过监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调整,以符合人类对有用性和安全性的偏好。
用于角色扮演、检索增强生成和功能调用的小型语言模型
Nemotron-Mini-4B-Instruct 是 NVIDIA 开发的一款小型语言模型,通过蒸馏、剪枝和量化优化,以提高速度和便于在设备上部署。它是从 Nemotron-4 15B 通过 NVIDIA 的大型语言模型压缩技术剪枝和蒸馏得到的 nvidia/Minitron-4B-Base 的微调版本。此指令模型针对角色扮演、检索增强问答(RAG QA)和功能调用进行了优化,支持 4096 个令牌的上下文长度,已准备好用于商业用途。
Hermes系列的最新版大型语言模型
Hermes 3是Nous Research公司推出的Hermes系列最新版大型语言模型(LLM),相较于Hermes 2,它在代理能力、角色扮演、推理、多轮对话、长文本连贯性等方面都有显著提升。Hermes系列模型的核心理念是将LLM与用户对齐,赋予终端用户强大的引导能力和控制权。Hermes 3在Hermes 2的基础上,进一步增强了功能调用和结构化输出能力,提升了通用助手能力和代码生成技能。
一款基于指令微调的大型语言模型
Mistral-7B-Instruct-v0.2 是一款基于 Mistral-7B-v0.2 模型进行指令微调的大型语言模型。它拥有 32k 的上下文窗口和 1e6 的 Rope Theta 值等特性。该模型可以根据给定的指令生成相应的文本输出,支持各种任务,如问答、写作、翻译等。通过指令微调,模型可以更好地理解和执行指令。虽然该模型目前还没有针对性的审核机制,但未来将继续优化,以支持更多场景的部署。
大型语言模型,支持多种参数规模
Meta Llama 3 是 Meta 推出的最新大型语言模型,旨在为个人、创作者、研究人员和各类企业解锁大型语言模型的能力。该模型包含从8B到70B参数的不同规模版本,支持预训练和指令调优。模型通过 GitHub 仓库提供,用户可以通过下载模型权重和分词器进行本地推理。Meta Llama 3 的发布标志着大型语言模型技术的进一步普及和应用,具有广泛的研究和商业潜力。
70B参数量的大型语言模型,专为工具使用优化
Llama-3-70B-Tool-Use是一种70B参数量的大型语言模型,专为高级工具使用和功能调用任务设计。该模型在Berkeley功能调用排行榜(BFCL)上的总体准确率达到90.76%,表现优于所有开源的70B语言模型。该模型优化了变换器架构,并通过完整的微调和直接偏好优化(DPO)在Llama 3 70B基础模型上进行了训练。输入为文本,输出为文本,增强了工具使用和功能调用的能力。尽管其主要用途是工具使用和功能调用,但在一般知识或开放式任务中,可能更适用通用语言模型。该模型可能在某些情况下产生不准确或有偏见的内容,用户应注意实现适合其特定用例的适当安全措施。该模型对温度和top_p采样配置非常敏感。
统一大型模型 API调用方式
支持将 openai、claude、azure openai, gemini,kimi, 智谱 AI, 通义千问,讯飞星火 API 等模型服务方的调用转为 openai 方式调用。屏蔽不同大模型 API 的差异,统一用 openai api 标准格式使用大模型。提供多种大型模型支持,包括负载均衡、路由、配置管理等功能。
Mistral Small 24B 是一款多语言、高性能的指令微调型大型语言模型,适用于多种应用场景。
Mistral Small 24B 是一款由 Mistral AI 团队开发的大型语言模型,拥有 240 亿参数,支持多语言对话和指令处理。该模型通过指令微调,能够生成高质量的文本内容,适用于聊天、写作、编程辅助等多种场景。其主要优点包括强大的语言生成能力、多语言支持以及高效推理能力。该模型适合需要高性能语言处理的个人和企业用户,具有开源许可,支持本地部署和量化优化,适合对数据隐私有要求的场景。
多语言大型语言模型,优化对话和文本生成。
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种大小的模型,专门针对多语言对话使用案例进行了优化,并在行业基准测试中表现优异。该模型使用优化的transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进一步与人类偏好对齐,以确保其有用性和安全性。
用简单语言指令实现自动化
Neural Wave是一款基于生成式人工智能技术的自动化工具,通过简单的语言指令,使任何企业都能够轻松实现自动化任务,无需昂贵的技术专业知识。我们的自定义大型语言模型(LLM)可以在任何软件应用程序上自动化任何任务(具有或不具有API),并处理任何结构化和完全非结构化的文档。我们的工具不需要任何RPA开发技能或技术专业知识,任何用户都可以通过简单的语言解释任务来自动化任何任务,无需技术技能。
多语言对话生成模型
Meta Llama 3.1系列模型是一套预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种规模的模型,专为多语言对话使用案例优化,性能优于许多开源和闭源聊天模型。
探索大型语言模型作为编程辅导工具的潜力,提出Trace-and-Verify工作流。
Coding-Tutor是一个基于大型语言模型(LLM)的编程辅导工具,旨在通过对话式交互帮助学习者提升编程能力。它通过Trace-and-Verify(Traver)工作流,结合知识追踪和逐轮验证,解决编程辅导中的关键挑战。该工具不仅适用于编程教育,还可扩展到其他任务辅导场景,帮助根据学习者的知识水平调整教学内容。项目开源,支持社区贡献。
专为角色扮演优化的大型语言模型
Higgs-Llama-3-70B是一个基于Meta-Llama-3-70B的后训练模型,特别针对角色扮演进行了优化,同时在通用领域指令执行和推理方面保持竞争力。该模型通过监督式微调,结合人工标注者和私有大型语言模型构建偏好对,进行迭代偏好优化以对齐模型行为,使其更贴近系统消息。与其它指令型模型相比,Higgs模型更紧密地遵循其角色。
LG AI Research开发的多语言、高性能大型语言模型
EXAONE-3.5-32B-Instruct-GGUF是LG AI Research开发的一系列指令调优的双语(英语和韩语)生成模型,包含2.4B至32B参数的不同版本。这些模型支持长达32K令牌的长上下文处理,展现了在真实世界用例和长上下文理解中的最前沿性能,同时在与近期发布的类似规模模型相比,在通用领域保持竞争力。该模型系列通过技术报告、博客和GitHub提供了详细信息,并且包含了多种精度的指令调优32B语言模型,具有以下特点:参数数量(不含嵌入)为30.95B,层数为64,注意力头数为GQA,包含40个Q头和8个KV头,词汇量为102,400,上下文长度为32,768令牌,量化包括Q8_0、Q6_0、Q5_K_M、Q4_K_M、IQ4_XS等GGUF格式(也包括BF16权重)。
通过角色扮演进行对话的大型语言模型
Peach-9B-8k-Roleplay是一个经过微调的大型语言模型,专门用于角色扮演对话。它基于01-ai/Yi-1.5-9B模型,通过数据合成方法在超过100K的对话上进行训练。尽管模型参数较小,但可能在34B以下参数的语言模型中表现最佳。
NVIDIA的高级语言模型,优化于英文对话场景。
Nemotron-4-340B-Instruct是由NVIDIA开发的大型语言模型(LLM),专为英文单轮和多轮对话场景优化。该模型支持4096个token的上下文长度,经过监督式微调(SFT)、直接偏好优化(DPO)和奖励感知偏好优化(RPO)等额外的对齐步骤。模型在约20K人工标注数据的基础上,通过合成数据生成管道合成了超过98%的用于监督微调和偏好微调的数据。这使得模型在人类对话偏好、数学推理、编码和指令遵循方面表现良好,并且能够为多种用例生成高质量的合成数据。
70亿参数的大型多语言对话生成模型
Meta Llama 3.1是Meta公司推出的一种大型语言模型,拥有70亿参数,支持8种语言的文本生成和对话。该模型使用优化的Transformer架构,并通过监督微调(SFT)和人类反馈强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。它旨在为商业和研究用途提供支持,特别是在多语言对话场景下表现出色。
首个面向中英文用户的指令调优语言模型
Gemma-2-27B-Chinese-Chat是基于google/gemma-2-27b-it的首个指令调优语言模型,专为中英文用户设计,拥有角色扮演和工具使用等多种能力。该模型通过ORPO算法进行微调,显著提升了在中英文对话、角色扮演和数学计算等方面的性能。
高效为大型语言模型提供服务
FP6-LLM是一种用于大型语言模型的全新支持方案,通过六位量化(FP6)有效地减小了模型大小,并在各种应用中始终保持模型质量。我们提出了TC-FPx,这是第一个完整的GPU内核设计方案,统一支持各种量化位宽的浮点权重。我们将TC-FPx内核集成到现有推理系统中,为量化的LLM推理提供了全新的端到端支持(称为FP6-LLM),实现了推理成本和模型质量之间更好的权衡。实验证明,FP6-LLM使得使用单个GPU进行LLaMA-70b推理成为可能,实现的规范化推理吞吐量比FP16基准高1.69倍至2.65倍。
构建监督式大型语言模型的无代码平台
Supervised AI是一个无代码AI开发平台,利用OpenAI的GPT引擎,构建由您自己的数据支持的监督式大型语言模型。您可以使用我们的自定义模型和数据源,在高准确率和快速开发的环境下构建强大且可扩展的AI。同时,您还可以使用Supervised API将您的AI模型集成到任何地方。
8B参数的大型多语言生成模型
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B大小的版本,支持8种语言,专为多语言对话用例优化,并在行业基准测试中表现优异。Llama 3.1模型采用自回归语言模型,使用优化的Transformer架构,并通过监督式微调(SFT)和强化学习结合人类反馈(RLHF)来提高模型的有用性和安全性。
前沿的多模态大型语言模型
NVLM-D-72B是NVIDIA推出的一款多模态大型语言模型,专注于视觉-语言任务,并且通过多模态训练提升了文本性能。该模型在视觉-语言基准测试中取得了与业界领先模型相媲美的成绩。
双语开源数学推理大型语言模型。
InternLM-Math-Plus 是一个最新的双语(英文和中文)开源大型语言模型(LLM),专注于数学推理,具有解决、证明、验证和增强数学问题的能力。它在非正式数学推理(如思维链和代码解释)和正式数学推理(如LEAN 4翻译和证明)方面都有显著的性能提升。
DeepHermes 3 是一款支持推理和常规响应模式的大型语言模型。
DeepHermes 3 是 NousResearch 开发的先进语言模型,能够通过系统性推理提升回答准确性。它支持推理模式和常规响应模式,用户可以通过系统提示切换。该模型在多轮对话、角色扮演、推理等方面表现出色,旨在为用户提供更强大和灵活的语言生成能力。模型基于 Llama-3.1-8B 微调,参数量达 80.3 亿,支持多种应用场景,如推理、对话、函数调用等。
© 2025 AIbase 备案号:闽ICP备08105208号-14