需求人群:
"该模型适合需要在研究和开发中使用工具和功能调用的开发者和研究人员。其高级工具使用和功能调用能力使其在处理API交互和复杂任务时表现出色。同时,其在BFCL上的高准确率也显示了其在功能调用任务中的可靠性。"
使用场景示例:
研究人员使用该模型进行自然语言处理任务,如文本生成和语言理解。
开发者利用该模型在应用程序中集成复杂的功能调用,以增强用户体验。
企业在处理大量结构化数据时,使用该模型进行数据操作和分析。
产品特色:
高级工具使用和功能调用任务优化
API交互、结构化数据操作和复杂工具使用
Berkeley功能调用排行榜(BFCL)上表现优异
优化的变换器架构
完整的微调和直接偏好优化(DPO)训练方法
输入和输出均为文本,增强了工具使用能力
对温度和top_p采样配置敏感,需要适当调整以优化性能
使用教程:
1. 访问Groq API控制台或Hugging Face平台。
2. 选择Llama-3-70B-Tool-Use模型。
3. 根据需要调整温度和top_p采样配置。
4. 输入文本并接收模型处理后的输出。
5. 利用输出进行进一步的数据分析或功能调用。
6. 根据模型的输出结果进行后续的应用开发或研究。
7. 注意模型在某些情况下可能产生的不准确或有偏见的内容,并实施适当的安全措施。
浏览量:42
最新流量情况
月访问量
25633.38k
平均访问时长
00:04:53
每次访问页数
5.77
跳出率
44.05%
流量来源
直接访问
49.07%
自然搜索
35.64%
邮件
0.03%
外链引荐
12.38%
社交媒体
2.75%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.36%
印度
8.76%
韩国
3.61%
俄罗斯
5.25%
美国
16.65%
大型语言模型,支持指令式对话和功能调用。
Mistral-7B-Instruct-v0.3是由Mistral AI Team开发的大型语言模型,它是Mistral-7B-v0.3的指令式微调版本。该模型具有扩展的词汇量、支持v3 Tokenizer和功能调用。它能够通过指令式对话和功能调用来生成文本,适合于需要交互式对话和自动化任务的场景。
高级工具使用和功能调用的8B参数语言模型
Llama-3-Groq-8B-Tool-Use模型是为高级工具使用和功能调用任务特别设计的8B参数因果语言模型。该模型经过优化的变换器架构,通过完全微调和直接偏好优化(DPO)在Llama 3 8B基础模型上进行训练。它在涉及API交互、结构化数据操作和复杂工具使用的任务中表现出色。然而,用户应注意,该模型可能在某些情况下产生不准确或有偏见的内容,并且用户需要为其特定用例实施适当的安全措施。
70B参数量的大型语言模型,专为工具使用优化
Llama-3-70B-Tool-Use是一种70B参数量的大型语言模型,专为高级工具使用和功能调用任务设计。该模型在Berkeley功能调用排行榜(BFCL)上的总体准确率达到90.76%,表现优于所有开源的70B语言模型。该模型优化了变换器架构,并通过完整的微调和直接偏好优化(DPO)在Llama 3 70B基础模型上进行了训练。输入为文本,输出为文本,增强了工具使用和功能调用的能力。尽管其主要用途是工具使用和功能调用,但在一般知识或开放式任务中,可能更适用通用语言模型。该模型可能在某些情况下产生不准确或有偏见的内容,用户应注意实现适合其特定用例的适当安全措施。该模型对温度和top_p采样配置非常敏感。
用于角色扮演、检索增强生成和功能调用的小型语言模型
Nemotron-Mini-4B-Instruct 是 NVIDIA 开发的一款小型语言模型,通过蒸馏、剪枝和量化优化,以提高速度和便于在设备上部署。它是从 Nemotron-4 15B 通过 NVIDIA 的大型语言模型压缩技术剪枝和蒸馏得到的 nvidia/Minitron-4B-Base 的微调版本。此指令模型针对角色扮演、检索增强问答(RAG QA)和功能调用进行了优化,支持 4096 个令牌的上下文长度,已准备好用于商业用途。
统一大型模型 API调用方式
支持将 openai、claude、azure openai, gemini,kimi, 智谱 AI, 通义千问,讯飞星火 API 等模型服务方的调用转为 openai 方式调用。屏蔽不同大模型 API 的差异,统一用 openai api 标准格式使用大模型。提供多种大型模型支持,包括负载均衡、路由、配置管理等功能。
开源大型语言模型工具集合
Open Source LLM Tools是一个专注于收集和展示开源大型语言模型(LLM)工具的平台。它提供了一个更新频繁的资源库,帮助开发者和研究者发现和利用最新的开源AI工具。该平台的主要优点在于其高更新频率和对活跃开源AI开发者的聚焦,使得用户能够及时获取到行业的最新动态和技术进展。
WeLM Playground是一款开源的大型中文语言模型聊天工具
WeLM Playground是基于开源中文语言模型WeLM的在线聊天 Demo,用户可以通过网页与 AI 对话、获取写作帮助。它提供稳定流畅的语言生成,支持自由聊天、话题控制、长篇闲聊、文本续写等功能。作为 Anthropic 公司开源的大模型之一,WeLM Playground 完全免费,代码开源,用户无需注册即可使用。它旨在让普通用户也能安全便捷地体验 LLM 对话带来的便利。
Hermes系列的最新版大型语言模型
Hermes 3是Nous Research公司推出的Hermes系列最新版大型语言模型(LLM),相较于Hermes 2,它在代理能力、角色扮演、推理、多轮对话、长文本连贯性等方面都有显著提升。Hermes系列模型的核心理念是将LLM与用户对齐,赋予终端用户强大的引导能力和控制权。Hermes 3在Hermes 2的基础上,进一步增强了功能调用和结构化输出能力,提升了通用助手能力和代码生成技能。
高效为大型语言模型提供服务
FP6-LLM是一种用于大型语言模型的全新支持方案,通过六位量化(FP6)有效地减小了模型大小,并在各种应用中始终保持模型质量。我们提出了TC-FPx,这是第一个完整的GPU内核设计方案,统一支持各种量化位宽的浮点权重。我们将TC-FPx内核集成到现有推理系统中,为量化的LLM推理提供了全新的端到端支持(称为FP6-LLM),实现了推理成本和模型质量之间更好的权衡。实验证明,FP6-LLM使得使用单个GPU进行LLaMA-70b推理成为可能,实现的规范化推理吞吐量比FP16基准高1.69倍至2.65倍。
轻量级文本分类工具,使用大型语言模型嵌入。
fastc是一个基于大型语言模型嵌入的简单且轻量级的文本分类工具。它专注于CPU执行,使用高效的模型如deepset/tinyroberta-6l-768d生成嵌入。通过余弦相似度分类代替微调,实现文本分类。它还可以在不增加额外开销的情况下,使用相同的模型运行多个分类器。
定制化大型语言模型的专业微调工具
Expert Specialized Fine-Tuning (ESFT) 是一种针对具有专家混合(MoE)架构的大型语言模型(LLMs)的高效定制化微调方法。它通过仅调整与任务相关的部分来优化模型性能,提高效率,同时减少资源和存储的使用。
前沿的多模态大型语言模型
NVLM-D-72B是NVIDIA推出的一款多模态大型语言模型,专注于视觉-语言任务,并且通过多模态训练提升了文本性能。该模型在视觉-语言基准测试中取得了与业界领先模型相媲美的成绩。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-8b是一个基于预训练的Llama3.1-8B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以用于声码器产生语音输出。该模型在翻译评估中表现出色,且没有偏好调整,适用于语音代理、语音到语音翻译、语音分析等场景。
双语开源数学推理大型语言模型。
InternLM-Math-Plus 是一个最新的双语(英文和中文)开源大型语言模型(LLM),专注于数学推理,具有解决、证明、验证和增强数学问题的能力。它在非正式数学推理(如思维链和代码解释)和正式数学推理(如LEAN 4翻译和证明)方面都有显著的性能提升。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
轻量级Python库,用于使用大型语言模型进行网站抓取。
Parsera是一个轻量级的Python库,专门设计用于与大型语言模型(LLMs)结合,以简化网站数据抓取的过程。它通过使用最少的令牌来提高速度并降低成本,使得数据抓取变得更加高效和经济。Parsera支持多种聊天模型,并且可以自定义使用不同的模型,如OpenAI或Azure。
基于Qwen2.5-Coder系列的大型语言模型,专注于代理应用。
Dria-Agent-a-3B是一个基于Qwen2.5-Coder系列的大型语言模型,专注于代理应用。它采用Pythonic函数调用方式,具有单次并行多函数调用、自由形式推理和动作以及即时复杂解决方案生成等优势。该模型在多个基准测试中表现出色,如Berkeley Function Calling Leaderboard (BFCL)、MMLU-Pro和Dria-Pythonic-Agent-Benchmark (DPAB)。模型大小为3.09B参数,支持BF16张量类型。
医疗领域先进的大型语言模型
HuatuoGPT-o1-70B是由FreedomIntelligence开发的医疗领域大型语言模型(LLM),专为复杂的医疗推理设计。该模型在提供最终响应之前,会生成一个复杂的思考过程,反映并完善其推理。HuatuoGPT-o1-70B能够处理复杂的医疗问题,提供深思熟虑的答案,这对于提高医疗决策的质量和效率至关重要。该模型基于LLaMA-3.1-70B架构,支持英文,并且可以部署在多种工具上,如vllm或Sglang,或者直接进行推理。
开放的大型语言模型排行榜
Open LLM Leaderboard是一个由Hugging Face提供的空间,旨在展示和比较各种大型语言模型的性能。它为开发者、研究人员和企业提供了一个平台,可以查看不同模型在特定任务上的表现,从而帮助用户选择最适合自己需求的模型。
前沿级多模态大型语言模型
NVLM 1.0是NVIDIA ADLR推出的前沿级多模态大型语言模型系列,它在视觉-语言任务上达到了业界领先水平,与顶级专有模型和开放访问模型相媲美。该模型在多模态训练后,甚至在纯文本任务上的准确性上也有所提高。NVLM 1.0的开源模型权重和Megatron-Core训练代码为社区提供了宝贵的资源。
大型语言模型,支持多种参数规模
Meta Llama 3 是 Meta 推出的最新大型语言模型,旨在为个人、创作者、研究人员和各类企业解锁大型语言模型的能力。该模型包含从8B到70B参数的不同规模版本,支持预训练和指令调优。模型通过 GitHub 仓库提供,用户可以通过下载模型权重和分词器进行本地推理。Meta Llama 3 的发布标志着大型语言模型技术的进一步普及和应用,具有广泛的研究和商业潜力。
Dria-Agent-α是基于Python的大型语言模型工具交互框架。
Dria-Agent-α是Hugging Face推出的大型语言模型(LLM)工具交互框架。它通过Python代码来调用工具,与传统的JSON模式相比,能更充分地发挥LLM的推理能力,使模型能够以更接近人类自然语言的方式进行复杂问题的解决。该框架利用Python的流行性和接近伪代码的语法,使LLM在代理场景中表现更佳。Dria-Agent-α的开发使用了合成数据生成工具Dria,通过多阶段管道生成逼真的场景,训练模型进行复杂问题解决。目前已有Dria-Agent-α-3B和Dria-Agent-α-7B两个模型在Hugging Face上发布。
多功能代码沙箱,适用于大型语言模型。
Sandbox Fusion是一个多功能代码沙箱,专为大型语言模型(LLMs)设计。它支持多达20种编程语言,能够全面测试包括编程、数学和硬件编程在内的多个领域。Sandbox Fusion集成了超过10个与编码相关的评估数据集,这些数据集具有标准化的数据格式,并且可以通过统一的HTTP API访问。此外,Sandbox Fusion针对云基础设施部署进行了优化,并在有特权容器时提供内置的安全隔离。产品背景信息显示,Sandbox Fusion由字节跳动有限公司开发,旨在为开发者提供一个安全、高效的代码测试环境。
世界顶尖的开源大型语言模型
Reflection Llama-3.1 70B 是目前世界上顶尖的开源大型语言模型(LLM),采用名为 Reflection-Tuning 的新技术进行训练,使模型能够检测其推理中的错误并进行修正。该模型在合成数据上进行了训练,这些数据由 Glaive 生成。对于正在训练模型的用户来说,Glaive 是一个非常出色的工具。该模型使用标准的 Llama 3.1 聊天格式,通过特殊的标签来区分模型的内部思考和最终答案,从而提升用户体验。
先进的大型语言模型,用于编程
Code Llama 是一款先进的大型语言模型,可以通过文本提示生成代码。它是当前公开可用的语言模型中在编程任务上达到最佳性能的模型之一。Code Llama 可以帮助开发人员提高工作效率,降低编码门槛,并作为一个教育工具帮助编程学习者编写更健壮、更好文档化的软件。Code Llama 提供了多个版本,包括基础版、针对 Python 的专用版和针对自然语言指令的定制版。它支持多种流行的编程语言,如 Python、C++、Java 等。Code Llama 免费供研究和商业使用。
使用大型语言模型改进文本嵌入
E5-mistral-7b-instruct 是一个具有 32 层和 4096 个嵌入大小的文本嵌入模型。它可以用于编码查询和文档,以生成语义向量表示。该模型使用自然语言任务描述指导文本嵌入过程,可以根据不同的任务进行定制。该模型在 MS-MARCO passage ranking 数据集上进行了训练,可用于信息检索、问答等自然语言处理任务。
高效开源的大型语言模型
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
先进的多模态大型语言模型
InternVL2_5-2B-MPO是一个多模态大型语言模型系列,展示了卓越的整体性能。该系列基于InternVL2.5和混合偏好优化构建。它集成了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型在多模态任务中表现出色,能够处理包括图像和文本在内的多种数据类型,适用于需要理解和生成多模态内容的场景。
© 2025 AIbase 备案号:闽ICP备08105208号-14