需求人群:
"目标受众为开发者、数据科学家和AI研究者。Hermes 3因其强大的语言理解和生成能力,特别适合需要处理复杂语言任务和构建基于语言模型的应用程序的专业人士。"
使用场景示例:
- 使用Hermes 3生成技术文档或教程。
- 利用模型进行股票基本面数据分析。
- 通过模型的角色扮演功能,创建互动式故事或游戏。
产品特色:
- 先进的代理能力:Hermes 3在代理任务上表现出色,能够理解和执行复杂的指令。
- 角色扮演和多轮对话:模型在角色扮演和多轮对话方面有显著提升,能够维持对话的连贯性。
- 长文本连贯性:在处理长文本时,Hermes 3能够保持更好的上下文连贯性。
- 功能调用:Hermes 3支持通过特定的系统提示进行功能调用,增强了模型的实用性。
- 结构化输出:模型能够生成符合特定JSON模式的结构化输出,便于开发者集成和使用。
- 代码生成:Hermes 3在代码生成方面有所提升,能够辅助开发者更高效地编写代码。
使用教程:
1. 访问Hugging Face网站并搜索'Hermes 3 - Llama-3.1 70B'模型。
2. 阅读模型卡片,了解模型的详细信息和技术报告。
3. 根据需要的功能,选择合适的提示格式,如功能调用或JSON模式。
4. 准备输入数据,按照模型要求格式化数据。
5. 使用Hugging Face提供的代码示例进行模型推理,生成所需的输出。
6. 将模型输出集成到自己的应用程序或服务中,以实现自动化和智能化。
浏览量:15
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
Hermes系列的最新版大型语言模型
Hermes 3是Nous Research公司推出的Hermes系列最新版大型语言模型(LLM),相较于Hermes 2,它在代理能力、角色扮演、推理、多轮对话、长文本连贯性等方面都有显著提升。Hermes系列模型的核心理念是将LLM与用户对齐,赋予终端用户强大的引导能力和控制权。Hermes 3在Hermes 2的基础上,进一步增强了功能调用和结构化输出能力,提升了通用助手能力和代码生成技能。
12B参数的大型语言模型
Mistral-Nemo-Base-2407是由Mistral AI和NVIDIA联合训练的12B参数大型预训练生成文本模型。该模型在多语言和代码数据上进行了训练,显著优于相同或更小规模的现有模型。其主要特点包括:Apache 2.0许可证发布,支持预训练和指令版本,128k上下文窗口训练,支持多种语言和代码数据,是Mistral 7B的替代品。模型架构包括40层、5120维、128头维、14364隐藏维、32头数、8个kv头(GQA)、词汇量约128k、旋转嵌入(theta=1M)。该模型在多个基准测试中表现出色,如HellaSwag、Winogrande、OpenBookQA等。
专为角色扮演优化的大型语言模型
Higgs-Llama-3-70B是一个基于Meta-Llama-3-70B的后训练模型,特别针对角色扮演进行了优化,同时在通用领域指令执行和推理方面保持竞争力。该模型通过监督式微调,结合人工标注者和私有大型语言模型构建偏好对,进行迭代偏好优化以对齐模型行为,使其更贴近系统消息。与其它指令型模型相比,Higgs模型更紧密地遵循其角色。
基于Llama-3-8B的多模态大型语言模型,专注于UI任务。
Ferret-UI是首个以用户界面为中心的多模态大型语言模型(MLLM),专为指代表达、定位和推理任务设计。它基于Gemma-2B和Llama-3-8B构建,能够执行复杂的用户界面任务。这个版本遵循了Apple的研究论文,是一个强大的工具,可以用于图像文本到文本的任务,并且在对话和文本生成方面具有优势。
由NVIDIA定制的大型语言模型,提升查询回答的帮助性。
Llama-3.1-Nemotron-70B-Instruct是NVIDIA定制的大型语言模型,专注于提升大型语言模型(LLM)生成回答的帮助性。该模型在多个自动对齐基准测试中表现优异,例如Arena Hard、AlpacaEval 2 LC和GPT-4-Turbo MT-Bench。它通过使用RLHF(特别是REINFORCE算法)、Llama-3.1-Nemotron-70B-Reward和HelpSteer2-Preference提示在Llama-3.1-70B-Instruct模型上进行训练。此模型不仅展示了NVIDIA在提升通用领域指令遵循帮助性方面的技术,还提供了与HuggingFace Transformers代码库兼容的模型转换格式,并可通过NVIDIA的build平台进行免费托管推理。
AMD训练的高性能语言模型
AMD-Llama-135m是一个基于LLaMA2模型架构训练的语言模型,能够在AMD MI250 GPU上流畅加载使用。该模型支持生成文本和代码,适用于多种自然语言处理任务。
用于角色扮演、检索增强生成和功能调用的小型语言模型
Nemotron-Mini-4B-Instruct 是 NVIDIA 开发的一款小型语言模型,通过蒸馏、剪枝和量化优化,以提高速度和便于在设备上部署。它是从 Nemotron-4 15B 通过 NVIDIA 的大型语言模型压缩技术剪枝和蒸馏得到的 nvidia/Minitron-4B-Base 的微调版本。此指令模型针对角色扮演、检索增强问答(RAG QA)和功能调用进行了优化,支持 4096 个令牌的上下文长度,已准备好用于商业用途。
多语言大型语言模型,支持多领域文本生成。
XVERSE-MoE-A36B是由深圳元象科技自主研发的多语言大型语言模型,采用混合专家模型(MoE)架构,具有2554亿的总参数规模和360亿的激活参数量。该模型支持包括中、英、俄、西等40多种语言,特别在中英双语上表现优异。模型使用8K长度的训练样本,并通过精细化的数据采样比例和动态数据切换策略,保证了模型的高质量和多样性。此外,模型还针对MoE架构进行了定制优化,提升了计算效率和整体吞吐量。
高效开源的大型语言模型
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
轻量级、多语言的AI模型,支持长文本生成和推理。
Phi-3.5-MoE-instruct是由微软开发的轻量级、多语言的AI模型,基于高质量、推理密集型数据构建,支持128K的上下文长度。该模型经过严格的增强过程,包括监督式微调、近端策略优化和直接偏好优化,以确保精确的指令遵循和强大的安全措施。它旨在加速语言和多模态模型的研究,作为生成性AI功能的构建模块。
轻量级、多语言的先进文本生成模型
Phi-3.5-mini-instruct 是微软基于高质量数据构建的轻量级、多语言的先进文本生成模型。它专注于提供高质量的推理密集型数据,支持128K的token上下文长度,经过严格的增强过程,包括监督式微调、近端策略优化和直接偏好优化,确保精确的指令遵循和强大的安全措施。
安全内容审核模型
ShieldGemma是由Google开发的一系列基于Gemma 2构建的安全内容审核模型,专注于四个危害类别(儿童不宜内容、危险内容、仇恨和骚扰)。它们是文本到文本的解码器仅大型语言模型,仅包含英文版本,具有开放权重,包括2B、9B和27B参数大小的模型。这些模型旨在作为负责任的生成AI工具包的一部分,提高AI应用的安全性。
先进的大型语言模型,具备推理和编程能力。
Mistral-Large-Instruct-2407是一个拥有123B参数的先进大型语言模型(LLM),具备最新的推理、知识和编程能力。它支持多语言,包括中文、英语、法语等十种语言,并且在80多种编程语言上受过训练,如Python、Java等。此外,它还具备代理中心能力和先进的数学及推理能力。
70亿参数的大型多语言文本生成模型
Meta Llama 3.1是Meta公司推出的大型语言模型,拥有70亿个参数,支持8种语言的文本生成。该模型采用优化的Transformer架构,并通过监督式微调和人类反馈强化学习进一步优化,以符合人类对帮助性和安全性的偏好。模型在多语言对话使用案例中表现优异,超越了许多现有的开源和封闭聊天模型。
70B参数量的大型语言模型,专为工具使用优化
Llama-3-70B-Tool-Use是一种70B参数量的大型语言模型,专为高级工具使用和功能调用任务设计。该模型在Berkeley功能调用排行榜(BFCL)上的总体准确率达到90.76%,表现优于所有开源的70B语言模型。该模型优化了变换器架构,并通过完整的微调和直接偏好优化(DPO)在Llama 3 70B基础模型上进行了训练。输入为文本,输出为文本,增强了工具使用和功能调用的能力。尽管其主要用途是工具使用和功能调用,但在一般知识或开放式任务中,可能更适用通用语言模型。该模型可能在某些情况下产生不准确或有偏见的内容,用户应注意实现适合其特定用例的适当安全措施。该模型对温度和top_p采样配置非常敏感。
专注于数学和科学任务的模型
Mathstral 7B 是一个专注于数学和科学任务的模型,基于 Mistral 7B。该模型在数学和科学领域的文本生成和推理方面表现出色,适用于需要高度精确和复杂计算的应用场景。模型的开发团队包括多位专家,确保了其在行业内的领先地位和可靠性。
大型语言模型,高效文本生成。
InternLM2.5-7B-Chat GGUF是一个大型语言模型,专为文本生成而设计。它基于开源框架llama.cpp,支持多种硬件平台的本地和云推理。该模型具有7.74亿参数,采用先进的架构设计,能够提供高质量的文本生成服务。
轻量级、先进的文本生成模型
Gemma是由Google开发的一系列轻量级、先进的开放模型,基于与Gemini模型相同的研究和技术构建。它们是文本到文本的解码器仅大型语言模型,适用于多种文本生成任务,如问答、摘要和推理。Gemma模型的相对较小的尺寸使其能够在资源有限的环境中部署,如笔记本电脑、桌面或您自己的云基础设施,使每个人都能接触到最先进的AI模型,并促进创新。
代码生成任务的新型模型,测试准确率高于GPT-4 Turbo。
AutoCoder是一个专为代码生成任务设计的新型模型,其在HumanEval基准数据集上的测试准确率超过了GPT-4 Turbo(2024年4月)和GPT-4o。与之前的开源模型相比,AutoCoder提供了一个新功能:它可以自动安装所需的包,并在用户希望执行代码时尝试运行代码,直到确定没有问题。
大型语言模型,支持指令式对话和功能调用。
Mistral-7B-Instruct-v0.3是由Mistral AI Team开发的大型语言模型,它是Mistral-7B-v0.3的指令式微调版本。该模型具有扩展的词汇量、支持v3 Tokenizer和功能调用。它能够通过指令式对话和功能调用来生成文本,适合于需要交互式对话和自动化任务的场景。
一种大型语言模型,具有扩展词汇量。
Mistral-7B-v0.3是由Mistral AI团队开发的大型语言模型(Large Language Model, LLM),它是Mistral-7B-v0.2的升级版,具有扩展到32768的词汇量。该模型支持文本生成,适合于需要文本生成能力的应用场景。目前,该模型没有内容审核机制,团队正在寻求社区合作,以实现更精细的内容审核,满足需要内容审核的部署环境。
一款具有128k有效上下文长度的70B参数的大型语言模型。
Llama-3-Giraffe-70B-Instruct是Abacus.AI推出的一款大型语言模型,它通过PoSE和动态NTK插值的训练方法,具有更长的有效上下文长度,能够处理大量的文本数据。该模型在训练中使用了约1.5B个token,并且通过适配器转换技术,将Llama-3-70B-Base模型的适配器应用到Llama-3-Giraffe-70B-Instruct上,以提高模型的性能。
一个用于创意写作的大型语言模型,具有出色的写作风格。
Meta-Llama-3-120B-Instruct 是一个基于 Meta-Llama-3-70B-Instruct 通过 MergeKit 自我合并的大型语言模型。它在创意写作方面表现出色,但在其他任务上可能存在挑战。该模型使用 Llama 3 聊天模板,默认上下文窗口为 8K,可以通过绳索theta扩展。模型在生成文本时有时会出现错别字,并且喜欢使用大写字母。
一站式AI助手,为您提供生成文本、图像、代码、视频、音频等的解决方案
Ultimate AI Assistant是一款综合AI助手,可帮助您简化任务,提高工作效率。它提供了生成文本、图像、代码、视频、音频等多种功能,具有高度定制化的AI解决方案。无论您是需要生成创意文案、设计图像、编写代码、制作视频还是创作音乐,Ultimate AI Assistant都能满足您的需求。该产品定价根据功能和使用量而定,详情请访问官方网站。
Grok-1.5带有改进的推理能力和128,000个标记的上下文长度。
Grok-1.5是一种先进的大型语言模型,具有出色的长文本理解和推理能力。它可以处理高达128,000个标记的长上下文,远超以前模型的能力。在数学和编码等任务中,Grok-1.5表现出色,在多个公认的基准测试中获得了极高的分数。该模型建立在强大的分布式训练框架之上,确保高效和可靠的训练过程。Grok-1.5旨在为用户提供强大的语言理解和生成能力,助力各种复杂的语言任务。
Mistral 7B是最佳7B模型
Mistral 7B是由Mistral AI免费提供给所有人使用的第一个大型语言模型。它适用于许多用例,具有优秀的自然编码能力和8k序列长度。该模型在所有基准测试中表现优于Llama 2.13B,并且在代码和推理基准测试中远远超过其他模型。Mistral 7B易于在任何云端和游戏GPU上部署。
使用大型语言模型生成机器人模拟任务
GenSim利用大型语言模型生成大量的机器人模拟任务,支持目标导向生成和探索性生成两种模式,可用于多任务策略训练和任务级别泛化。使用GPT4扩展了现有基准测试10倍以上,支持超过100个任务,通过有监督微调和评估多个LLM,包括微调的GPT和Code Llama,生成机器人模拟任务的代码。最小的模拟到真实世界的适应后,预训练在GPT4生成的模拟任务上的多任务策略在真实世界中展现了更强的转移能力,超过基线25%。
大型语言模型角色扮演框架
RoleLLM是一个角色扮演框架,用于构建和评估大型语言模型的角色扮演能力。它包括四个阶段:角色概要构建、基于上下文的指令生成、使用GPT进行角色提示和基于角色的指令调整。通过Context-Instruct和RoleGPT,我们创建了RoleBench,这是一个系统化和细粒度的角色级别基准数据集,包含168,093个样本。此外,RoCIT在RoleBench上产生了RoleLLaMA(英语)和RoleGLM(中文),显著提高了角色扮演能力,甚至与使用GPT-4的RoleGPT取得了可比较的结果。
© 2024 AIbase 备案号:闽ICP备08105208号-14