需求人群:
"目标受众包括开发者、研究人员和需要复杂逻辑处理及多步骤任务执行的企业。对于开发者,该模型可以辅助编程,提高开发效率;对于研究人员,它提供了研究大型语言模型在特定领域应用的平台;对于企业,可用于构建智能代理系统,优化业务流程。"
使用场景示例:
开发者利用该模型快速生成代码片段,加速软件开发过程。
研究人员通过模型研究Pythonic函数调用在不同任务中的表现。
企业构建智能代理,自动处理客户咨询和任务调度。
产品特色:
基于Python代码块与工具交互,输出动作
单次聊天轮次中可利用多个同步进程解决问题
自由形式推理和动作,无需特殊提示或调整
生成复杂的Python程序解决方案,支持条件和同步管道
在多个基准测试中表现出色,涵盖多种场景和任务
使用教程:
1. 导入必要的库,如transformers和AutoTokenizer。
2. 使用预训练模型名称初始化模型和分词器。
3. 准备系统提示,包含可用函数和限制条件。
4. 构建用户查询,与系统提示一起形成输入消息。
5. 使用分词器对消息进行编码,生成模型输入。
6. 调用模型生成函数,获取输出。
7. 解码输出,获取模型生成的Python代码解决方案。
浏览量:11
最新流量情况
月访问量
21315.89k
平均访问时长
00:05:02
每次访问页数
5.22
跳出率
45.50%
流量来源
直接访问
49.07%
自然搜索
35.51%
邮件
0.03%
外链引荐
12.37%
社交媒体
3.00%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.90%
印度
8.10%
日本
3.61%
俄罗斯
5.37%
美国
18.06%
一个基于Qwen2.5-Coder系列训练的大型语言模型,专注于代理应用。
Dria-Agent-a-7B是一个基于Qwen2.5-Coder系列训练的大型语言模型,专注于代理应用。它采用Pythonic函数调用方式,与传统JSON函数调用方法相比,具有单次并行多函数调用、自由形式推理和动作以及即时复杂解决方案生成等优势。该模型在多个基准测试中表现出色,包括Berkeley Function Calling Leaderboard (BFCL)、MMLU-Pro和Dria-Pythonic-Agent-Benchmark (DPAB)。模型大小为76.2亿参数,采用BF16张量类型,支持文本生成任务。其主要优点包括强大的编程辅助能力、高效的函数调用方式以及在特定领域的高准确率。该模型适用于需要复杂逻辑处理和多步骤任务执行的应用场景,如自动化编程、智能代理等。目前,该模型在Hugging Face平台上提供,供用户免费使用。
Dria-Agent-α是基于Python的大型语言模型工具交互框架。
Dria-Agent-α是Hugging Face推出的大型语言模型(LLM)工具交互框架。它通过Python代码来调用工具,与传统的JSON模式相比,能更充分地发挥LLM的推理能力,使模型能够以更接近人类自然语言的方式进行复杂问题的解决。该框架利用Python的流行性和接近伪代码的语法,使LLM在代理场景中表现更佳。Dria-Agent-α的开发使用了合成数据生成工具Dria,通过多阶段管道生成逼真的场景,训练模型进行复杂问题解决。目前已有Dria-Agent-α-3B和Dria-Agent-α-7B两个模型在Hugging Face上发布。
基于特定模型的量化大型语言模型,适用于自然语言处理等任务。
该模型是量化版大型语言模型,采用4位量化技术,降低存储与计算需求,适用于自然语言处理,参数量8.03B,免费且可用于非商业用途,适合资源受限环境下高性能语言应用需求者。
InternVL2.5-MPO系列模型,基于InternVL2.5和混合偏好优化,展现卓越性能。
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化(MPO)构建。该系列模型在多模态任务中表现出色,能够处理图像、文本和视频数据,并生成高质量的文本响应。模型采用'ViT-MLP-LLM'范式,通过像素unshuffle操作和动态分辨率策略优化视觉处理能力。此外,模型还引入了多图像和视频数据的支持,进一步扩展了其应用场景。InternVL2.5-MPO在多模态能力评估中超越了多个基准模型,证明了其在多模态领域的领先地位。
先进的医疗领域大型语言模型
HuatuoGPT-o1-8B 是一个专为高级医疗推理设计的医疗领域大型语言模型(LLM)。它在提供最终响应之前会生成一个复杂的思考过程,反映并完善其推理过程。该模型基于LLaMA-3.1-8B构建,支持英文,并且采用'thinks-before-it-answers'的方法,输出格式包括推理过程和最终响应。此模型在医疗领域具有重要意义,因为它能够处理复杂的医疗问题并提供深思熟虑的答案,这对于提高医疗决策的质量和效率至关重要。
70亿参数的多语言大型语言模型
Llama-3.3-70B-Instruct是由Meta开发的一个70亿参数的大型语言模型,专门针对多语言对话场景进行了优化。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来提高其有用性和安全性。它支持多种语言,并能够处理文本生成任务,是自然语言处理领域的一项重要技术。
Qwen2.5-Coder系列的1.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、代码推理和代码修复而设计。基于强大的Qwen2.5,通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此模型是1.5B参数的指令调优版本,采用GGUF格式,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
Hermes系列的最新版大型语言模型
Hermes 3是Nous Research公司推出的Hermes系列最新版大型语言模型(LLM),相较于Hermes 2,它在代理能力、角色扮演、推理、多轮对话、长文本连贯性等方面都有显著提升。Hermes系列模型的核心理念是将LLM与用户对齐,赋予终端用户强大的引导能力和控制权。Hermes 3在Hermes 2的基础上,进一步增强了功能调用和结构化输出能力,提升了通用助手能力和代码生成技能。
基于Llama-3-8B的多模态大型语言模型,专注于UI任务。
Ferret-UI是首个以用户界面为中心的多模态大型语言模型(MLLM),专为指代表达、定位和推理任务设计。它基于Gemma-2B和Llama-3-8B构建,能够执行复杂的用户界面任务。这个版本遵循了Apple的研究论文,是一个强大的工具,可以用于图像文本到文本的任务,并且在对话和文本生成方面具有优势。
多语言大型语言模型,支持多领域文本生成。
XVERSE-MoE-A36B是由深圳元象科技自主研发的多语言大型语言模型,采用混合专家模型(MoE)架构,具有2554亿的总参数规模和360亿的激活参数量。该模型支持包括中、英、俄、西等40多种语言,特别在中英双语上表现优异。模型使用8K长度的训练样本,并通过精细化的数据采样比例和动态数据切换策略,保证了模型的高质量和多样性。此外,模型还针对MoE架构进行了定制优化,提升了计算效率和整体吞吐量。
高效开源的大型语言模型
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
安全内容审核模型
ShieldGemma是由Google开发的一系列基于Gemma 2构建的安全内容审核模型,专注于四个危害类别(儿童不宜内容、危险内容、仇恨和骚扰)。它们是文本到文本的解码器仅大型语言模型,仅包含英文版本,具有开放权重,包括2B、9B和27B参数大小的模型。这些模型旨在作为负责任的生成AI工具包的一部分,提高AI应用的安全性。
70亿参数的大型多语言文本生成模型
Meta Llama 3.1是Meta公司推出的大型语言模型,拥有70亿个参数,支持8种语言的文本生成。该模型采用优化的Transformer架构,并通过监督式微调和人类反馈强化学习进一步优化,以符合人类对帮助性和安全性的偏好。模型在多语言对话使用案例中表现优异,超越了许多现有的开源和封闭聊天模型。
12B参数的大型语言模型
Mistral-Nemo-Base-2407是由Mistral AI和NVIDIA联合训练的12B参数大型预训练生成文本模型。该模型在多语言和代码数据上进行了训练,显著优于相同或更小规模的现有模型。其主要特点包括:Apache 2.0许可证发布,支持预训练和指令版本,128k上下文窗口训练,支持多种语言和代码数据,是Mistral 7B的替代品。模型架构包括40层、5120维、128头维、14364隐藏维、32头数、8个kv头(GQA)、词汇量约128k、旋转嵌入(theta=1M)。该模型在多个基准测试中表现出色,如HellaSwag、Winogrande、OpenBookQA等。
多模态智能代理框架,解决复杂任务
OmAgent是一个复杂的多模态智能代理系统,致力于利用多模态大型语言模型和其他多模态算法来完成引人入胜的任务。该项目包括一个轻量级的智能代理框架omagent_core,精心设计以应对多模态挑战。OmAgent由三个核心组件构成:Video2RAG、DnCLoop和Rewinder Tool,分别负责长视频理解、复杂问题分解和信息回溯。
基于大型语言模型的智能代理研究
xLAM是一个由Salesforce AI Research团队开发的基于大型语言模型(Large Language Models, LLMs)的智能代理研究项目。它通过聚合来自不同环境的智能代理轨迹,标准化并统一这些轨迹到一致的格式,以创建一个优化的通用数据加载器,专门用于智能代理的训练。xLAM-v0.1-r是此模型系列的0.1版本,专为研究目的设计,与VLLM和FastChat平台兼容。
大型语言模型,高效文本生成。
InternLM2.5-7B-Chat GGUF是一个大型语言模型,专为文本生成而设计。它基于开源框架llama.cpp,支持多种硬件平台的本地和云推理。该模型具有7.74亿参数,采用先进的架构设计,能够提供高质量的文本生成服务。
轻量级、先进的文本生成模型
Gemma是由Google开发的一系列轻量级、先进的开放模型,基于与Gemini模型相同的研究和技术构建。它们是文本到文本的解码器仅大型语言模型,适用于多种文本生成任务,如问答、摘要和推理。Gemma模型的相对较小的尺寸使其能够在资源有限的环境中部署,如笔记本电脑、桌面或您自己的云基础设施,使每个人都能接触到最先进的AI模型,并促进创新。
NVIDIA的高级语言模型,优化于英文对话场景。
Nemotron-4-340B-Instruct是由NVIDIA开发的大型语言模型(LLM),专为英文单轮和多轮对话场景优化。该模型支持4096个token的上下文长度,经过监督式微调(SFT)、直接偏好优化(DPO)和奖励感知偏好优化(RPO)等额外的对齐步骤。模型在约20K人工标注数据的基础上,通过合成数据生成管道合成了超过98%的用于监督微调和偏好微调的数据。这使得模型在人类对话偏好、数学推理、编码和指令遵循方面表现良好,并且能够为多种用例生成高质量的合成数据。
基于Dolphin-2.9-Mixtral-8x22b的先进AI模型
Dolphin 2.9.1 Mixtral 1x22b是由Cognitive Computations团队精心训练和策划的AI模型,基于Dolphin-2.9-Mixtral-8x22b版本,拥有Apache-2.0许可。该模型具备64k上下文容量,通过16k序列长度的全权重微调,经过27小时在8个H100 GPU上的训练完成。Dolphin 2.9.1具有多样的指令、对话和编码技能,还具备初步的代理能力和支持函数调用。该模型未进行审查,数据集已过滤去除对齐和偏见,使其更加合规。建议在作为服务公开之前,实施自己的对齐层。
一种大型语言模型,具有扩展词汇量。
Mistral-7B-v0.3是由Mistral AI团队开发的大型语言模型(Large Language Model, LLM),它是Mistral-7B-v0.2的升级版,具有扩展到32768的词汇量。该模型支持文本生成,适合于需要文本生成能力的应用场景。目前,该模型没有内容审核机制,团队正在寻求社区合作,以实现更精细的内容审核,满足需要内容审核的部署环境。
一款具有128k有效上下文长度的70B参数的大型语言模型。
Llama-3-Giraffe-70B-Instruct是Abacus.AI推出的一款大型语言模型,它通过PoSE和动态NTK插值的训练方法,具有更长的有效上下文长度,能够处理大量的文本数据。该模型在训练中使用了约1.5B个token,并且通过适配器转换技术,将Llama-3-70B-Base模型的适配器应用到Llama-3-Giraffe-70B-Instruct上,以提高模型的性能。
一个用于创意写作的大型语言模型,具有出色的写作风格。
Meta-Llama-3-120B-Instruct 是一个基于 Meta-Llama-3-70B-Instruct 通过 MergeKit 自我合并的大型语言模型。它在创意写作方面表现出色,但在其他任务上可能存在挑战。该模型使用 Llama 3 聊天模板,默认上下文窗口为 8K,可以通过绳索theta扩展。模型在生成文本时有时会出现错别字,并且喜欢使用大写字母。
提高生产力的AI助手,简单易用
whatwide.ai是一个提高生产力的AI助手,使用人工智能技术来节省时间并提高工作效率。它提供了50多种AI模型,包括文本生成、网站帮助、社交媒体分析、编程辅助等多种功能。whatwide.ai的优点在于高质量的内容生成、快速且安全的操作,以及多种AI类型供用户选择。
快速构建自然语言处理应用
GradientJ是一个用于测试、部署和管理自然语言处理应用的平台。它基于大型语言模型如GPT-4,提供快速构建NLP应用的能力。用户可以使用GradientJ开发自定义的文本生成、问答系统、聊天机器人等NLP应用。GradientJ提供简单易用的接口和工具,让开发者能够快速上手并实现自己的用例。定价方案灵活,适合个人开发者和企业用户。
SmolVLM-256M 是世界上最小的多模态模型,可高效处理图像和文本输入并生成文本输出。
SmolVLM-256M 是由 Hugging Face 开发的多模态模型,基于 Idefics3 架构,专为高效处理图像和文本输入而设计。它能够回答关于图像的问题、描述视觉内容或转录文本,且仅需不到 1GB 的 GPU 内存即可运行推理。该模型在多模态任务上表现出色,同时保持轻量化架构,适合在设备端应用。其训练数据来自 The Cauldron 和 Docmatix 数据集,涵盖文档理解、图像描述等多领域内容,使其具备广泛的应用潜力。目前该模型在 Hugging Face 平台上免费提供,旨在为开发者和研究人员提供强大的多模态处理能力。
一个为开发者提供的生产级智能代理框架,可使用自然语言构建生产级代理工作流。
Eko 是一个面向开发者的生产级智能代理框架。它允许开发者通过自然语言和代码逻辑轻松构建基于代理的工作流。Eko 的主要优点包括高效的任务分解能力、强大的工具支持以及灵活的定制化选项。它旨在帮助开发者快速实现复杂的自动化任务,提高开发效率。Eko 由 FellouAI 团队开发,目前处于开源状态,支持多种平台,包括浏览器和桌面环境。具体价格未明确公开,但从其开源特性来看,可能对开发者免费开放,但部分高级功能或定制化服务可能需要付费。
© 2025 AIbase 备案号:闽ICP备08105208号-14