需求人群:
"MLE-bench的目标受众是机器学习工程师、数据科学家和AI研究人员。这些专业人员可以通过MLE-bench来评估和比较不同AI代理在机器学习工程任务上的表现,从而选择最适合他们项目的AI工具。同时,研究人员可以通过该基准测试来进一步理解AI代理在机器学习工程领域的能力,推动相关技术的发展。"
使用场景示例:
机器学习工程师使用MLE-bench来测试和评估不同AI模型在特定任务上的性能。
数据科学家利用MLE-bench来比较不同AI代理在数据预处理和模型训练上的效果。
AI研究人员使用MLE-bench来研究和改进AI代理在机器学习工程任务中的资源利用效率。
产品特色:
评估AI代理在机器学习工程任务上的性能
提供75个来自Kaggle的多样化机器学习工程竞赛任务
使用Kaggle排行榜数据建立人类基准
开源代理框架评估前沿语言模型
研究AI代理的资源扩展和预训练污染影响
开源基准代码,促进未来研究
使用教程:
步骤1:访问MLE-bench的官方网站或GitHub页面。
步骤2:阅读关于MLE-bench的介绍和使用方法。
步骤3:下载并安装必要的软件和依赖,如开源代理框架。
步骤4:根据指南设置并运行基准测试,评估你的AI代理或模型。
步骤5:分析测试结果,了解你的AI代理在机器学习工程任务上的表现。
步骤6:根据需要调整AI代理的配置或优化模型,以提高其在基准测试中的表现。
步骤7:参与社区讨论,分享你的经验和发现,或寻求帮助。
浏览量:10
最新流量情况
月访问量
5.26m
平均访问时长
00:01:38
每次访问页数
2.18
跳出率
57.10%
流量来源
直接访问
62.88%
自然搜索
26.05%
邮件
0.05%
外链引荐
10.62%
社交媒体
0.35%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
巴西
5.90%
加拿大
3.52%
英国
3.47%
印度
8.68%
美国
18.97%
机器学习工程能力的AI代理评估基准
MLE-bench是由OpenAI推出的一个基准测试,旨在衡量AI代理在机器学习工程方面的表现。该基准测试汇集了75个来自Kaggle的机器学习工程相关竞赛,形成了一套多样化的挑战性任务,测试了训练模型、准备数据集和运行实验等现实世界中的机器学习工程技能。通过Kaggle公开的排行榜数据,为每项竞赛建立了人类基准。使用开源代理框架评估了多个前沿语言模型在该基准上的表现,发现表现最佳的设置——OpenAI的o1-preview配合AIDE框架——在16.9%的竞赛中至少达到了Kaggle铜牌的水平。此外,还研究了AI代理的各种资源扩展形式以及预训练污染的影响。MLE-bench的基准代码已经开源,以促进未来对AI代理机器学习工程能力的理解。
AI模型部署和推理优化的专家
Neural Magic是一家专注于AI模型优化和部署的公司,提供领先的企业级推理解决方案,以最大化性能和提高硬件效率。公司的产品支持在GPU和CPU基础设施上运行领先的开源大型语言模型(LLMs),帮助企业在云、私有数据中心或边缘环境中安全、高效地部署AI模型。Neural Magic的产品背景信息强调了其在机器学习模型优化方面的专业知识,以及与科研机构合作开发的创新LLM压缩技术,如GPTQ和SparseGPT。产品价格和定位方面,Neural Magic提供了免费试用和付费服务,旨在帮助企业降低成本、提高效率,并保持数据隐私和安全。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
开源的去蒸馏FLUX模型
LibreFLUX是一个基于Apache 2.0许可的开源版本,提供了完整的T5上下文长度,使用注意力掩码,恢复了分类器自由引导,并去除了大部分FLUX美学微调/DPO。这意味着它比基础FLUX更不美观,但有潜力更容易地微调到任何新的分布。LibreFLUX的开发秉承开源软件的核心原则,即使用困难,比专有解决方案更慢、更笨拙,并且审美停留在21世纪初。
高效能小型语言模型
Zamba2-7B是由Zyphra团队开发的一款小型语言模型,它在7B规模上超越了当前领先的模型,如Mistral、Google的Gemma和Meta的Llama3系列,无论是在质量还是性能上。该模型专为在设备上和消费级GPU上运行以及需要强大但紧凑高效模型的众多企业应用而设计。Zamba2-7B的发布,展示了即使在7B规模上,前沿技术仍然可以被小团队和适度预算所触及和超越。
小型语言模型调研、测量与洞察
SLM_Survey是一个专注于小型语言模型(SLMs)的研究项目,旨在通过调研和测量,提供对这些模型的深入了解和技术评估。该项目涵盖了基于Transformer的、仅解码器的语言模型,参数范围在100M至5B之间。通过对59个最先进的开源SLMs进行调研,分析了它们的技术创新,并在多个领域评估了它们的能力,包括常识推理、上下文学习、数学和编程。此外,还对它们的运行时成本进行了基准测试,包括推理延迟和内存占用。这些研究对于推动SLMs领域的研究具有重要价值。
研究项目,探索自动语言模型基准测试中的作弊行为。
Cheating LLM Benchmarks 是一个研究项目,旨在通过构建所谓的“零模型”(null models)来探索在自动语言模型(LLM)基准测试中的作弊行为。该项目通过实验发现,即使是简单的零模型也能在这些基准测试中取得高胜率,这挑战了现有基准测试的有效性和可靠性。该研究对于理解当前语言模型的局限性和改进基准测试方法具有重要意义。
开源AI模型,可微调、蒸馏、部署。
Llama 3.2是一系列大型语言模型(LLMs),预训练和微调在1B和3B大小的多语言文本模型,以及11B和90B大小的文本和图像输入输出文本的模型。这些模型可以用于开发高性能和高效率的应用。Llama 3.2的模型可以在移动设备和边缘设备上运行,支持多种编程语言,并且可以通过Llama Stack构建代理应用程序。
世界顶尖的开源大型语言模型
Reflection Llama-3.1 70B 是目前世界上顶尖的开源大型语言模型(LLM),采用名为 Reflection-Tuning 的新技术进行训练,使模型能够检测其推理中的错误并进行修正。该模型在合成数据上进行了训练,这些数据由 Glaive 生成。对于正在训练模型的用户来说,Glaive 是一个非常出色的工具。该模型使用标准的 Llama 3.1 聊天格式,通过特殊的标签来区分模型的内部思考和最终答案,从而提升用户体验。
高效开源的大型语言模型
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
RWKV v6 Finch 14B,开源大模型,高效处理长文本。
RWKV v6 Finch 14B是RWKV架构的第六个版本,也是该系列中最大的模型。它通过引入数据依赖性到token shift和time-mixing中,提高了处理长文本时的效率。Finch 14B模型在处理提示时,能够更好地管理其长期记忆,从而提供更广泛的应用范围。该模型是开源的,由Linux Foundation认可,并且接受社区的GPU集群时间捐赠以支持训练。
AI即时推理解决方案,速度领先世界。
Cerebras Inference是Cerebras公司推出的AI推理平台,提供20倍于GPU的速度和1/5的成本。它利用Cerebras的高性能计算技术,为大规模语言模型、高性能计算等提供快速、高效的推理服务。该平台支持多种AI模型,包括医疗、能源、政府和金融服务等行业应用,具有开放源代码的特性,允许用户训练自己的基础模型或微调开源模型。
2D游戏动画生成模型
godmodeanimation是一个开源的2D游戏动画生成模型,它通过训练文本到视频和图像到视频的模型来生成2D游戏动画。开发者使用了公共游戏动画数据和3D mixamo模型渲染动画来训练动画生成模型,并开源了模型、训练数据、训练代码和数据生成代码。
AI可观测性和机器学习监控平台
Evidently AI是一个开源的Python库,用于监控机器学习模型,支持从RAGs到AI助手的LLM驱动产品的评估。它提供了数据漂移、数据质量和生产ML模型性能的监控,拥有超过2000万的下载量和5000+的GitHub星标,是机器学习领域中一个值得信赖的监控工具。
9天内预训练的紧凑型大型语言模型
1.5-Pints是一个开源的紧凑型大型语言模型(LLM),它在9天内使用高质量数据进行预训练,旨在成为与Apple OpenELM和Microsoft Phi相当的AI助手。该模型的代码库和架构公开,以促进模型的复制、实验和进一步的开源开发。
一个正在训练中的开源语言模型,具备“听力”能力。
llama3-s是一个开放的、正在进行中的研究实验,旨在将基于文本的大型语言模型(LLM)扩展到具有原生“听力”能力。该项目使用Meta的Chameleon论文启发的技术,专注于令牌传递性,将声音令牌扩展到LLM的词汇表中,未来可能扩展到各种输入类型。作为一个开源科学实验,代码库和数据集都是公开的。
300行代码实现基于LLM的语音转录。
WeST是一个开源的语音识别转录模型,以300行代码的简洁形式,基于大型语言模型(LLM)实现语音到文本的转换。它由一个大型语言模型、一个语音编码器和一个投影器组成,其中仅投影器部分可训练。WeST的开发灵感来源于SLAM-ASR和LLaMA 3.1,旨在通过简化的代码实现高效的语音识别功能。
开源AI搜索引擎,提供网络搜索能力。
OpenPerPlex是一个开源AI搜索引擎,利用尖端技术提供网络搜索功能。它结合了语义分块、结果重排、谷歌搜索集成以及Groq作为推理引擎等技术,支持Llama 3 70B模型,以提高搜索的准确性和效率。
开源框架,支持数据驱动的自适应语言代理。
aiwaves-cn/agents 是一个开源框架,专注于数据驱动的自适应语言代理。它提供了一种系统化框架,通过符号学习训练语言代理,灵感来源于用于训练神经网络的连接主义学习过程。该框架实现了反向传播和基于梯度的权重更新,使用基于语言的损失、梯度和权重,支持多代理系统的优化。
高效准确的气候模拟模型
NeuralGCM是由谷歌研究团队开发的气候模型,与传统基于物理的气候模型相比,它结合了机器学习技术,提高了模拟的准确性和效率。NeuralGCM能够生成2至15天的天气预测,其准确性超过了当前的黄金标准物理模型,并且在重现过去40年的温度数据方面比传统大气模型更为准确。尽管NeuralGCM尚未构建为完整的气候模型,但它标志着开发更强大、更易用气候模型的重要一步。
综合表格数据学习工具箱和基准测试
LAMDA-TALENT是一个综合的表格数据分析工具箱和基准测试平台,它集成了20多种深度学习方法、10多种传统方法以及300多个多样化的表格数据集。该工具箱旨在提高模型在表格数据上的性能,提供强大的预处理能力,优化数据学习,并支持用户友好和适应性强的操作,适用于新手和专家数据科学家。
构建个性化AI代理的开源平台
Scoopika是一个开源的开发者平台,旨在帮助开发者构建能够看、说、听、学习并采取行动的个性化AI代理。它为AI时代提供了一个安全、高效且易于使用的平台,支持全边缘兼容性和实时流媒体,内置视觉和语音聊天功能。Scoopika强调了其开放源代码的特性,提供了服务器端和客户端的运行库,以及React项目中的集成模块,拥有一个不断增长的开发者社区。
探索大脑智能的AI项目
Thousand Brains Project是由Jeff Hawkins和Numenta公司发起,旨在通过理解大脑新皮层的工作原理来开发新型的人工智能系统。该项目基于Thousand Brains Theory of Intelligence,提出了与传统AI系统根本不同的大脑工作原理。项目的目标是构建一种高效且强大的智能系统,能够实现人类所具备的智能能力。Numenta公司开放了其研究资源,包括会议记录、代码开源,并建立了一个围绕其算法的大型社区。该项目得到了盖茨基金会等的资金支持,并鼓励全球研究人员参与或加入这一激动人心的项目。
提升市场搜索、推荐和原生广告的排名
Promoted是一个专注于市场搜索、推荐和原生广告排名的解决方案,通过先进的机器学习技术和大型语言模型搜索相关性AI技术,显著提升转化率和广告质量。它为市场平台提供了统一的搜索、推荐和广告服务,帮助企业实现更好的匹配和更高的收益。
基于Agently AI框架的开源自动新闻收集工具
Agently Daily News Collector是一个基于Agently AI应用开发框架的开源项目,能够自动收集特定主题的新闻。用户只需输入新闻收集的领域主题,AI代理将自动工作,直到生成并保存到Markdown文件中的高质量新闻集合。
开源字幕生成工具,实现内容无缝翻译。
subtitle是一个开源的字幕生成工具,利用先进的机器学习技术,为用户提供准确且自然的声音字幕。它支持多种语言,易于集成到现有的工作流程中,并允许用户在自己的服务器上自托管,增强控制权和隐私保护。
开源向量数据库,适用于开发者构建通用AI应用。
Milvus是一个为开发者设计的开源向量数据库,专门用于大规模高维向量的相似性搜索。它支持pip安装,可以与流行的AI开发工具一起使用,并且能够扩展到数十亿个向量。Milvus以其高效的向量相似性搜索能力,帮助开发者构建强大且可扩展的图像检索系统,无论是管理个人照片库还是开发商业图像搜索应用程序,Milvus都提供了一个强大的基础,帮助开发者发掘图像集合中的潜在价值。
© 2024 AIbase 备案号:闽ICP备08105208号-14