需求人群:
"Easy-RAG主要面向希望深入了解和应用RAG技术的研究人员和开发者。无论是学术研究还是商业开发,该系统都能提供强大的支持,帮助用户快速实现复杂的检索和生成任务。"
使用场景示例:
研究人员使用Easy-RAG进行学术论文中的信息检索和内容生成。
开发者利用Easy-RAG构建智能问答系统,提高问答准确性。
企业通过Easy-RAG实现个性化内容推荐,增强用户体验。
产品特色:
集成知识图谱提取解析工具,增强信息检索能力。
使用rerank技术重新排序检索结果,提升检索效率。
新增faiss向量数据库,优化向量检索性能。
提供web界面,方便用户进行交互操作。
支持自主扩展,允许开发者根据需求添加新功能。
持续更新,不断加入新的功能和技术。
使用教程:
1. 访问Easy-RAG的GitHub页面,了解项目基本信息。
2. 阅读README.md文件,获取安装和使用指南。
3. 克隆或下载项目源代码到本地环境。
4. 根据安装指南配置环境和依赖。
5. 运行系统,进行功能测试和个性化配置。
6. 根据需要对系统进行扩展,添加自定义功能。
浏览量:250
最新流量情况
月访问量
4.75m
平均访问时长
00:06:34
每次访问页数
6.10
跳出率
36.20%
流量来源
直接访问
52.19%
自然搜索
32.64%
邮件
0.04%
外链引荐
12.93%
社交媒体
2.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.32%
德国
3.68%
印度
9.04%
俄罗斯
3.92%
美国
19.25%
一个适合学习、使用、自主扩展的RAG系统。
Easy-RAG是一个检索增强生成(RAG)系统,它不仅适合学习者了解和掌握RAG技术,同时也便于开发者使用和进行自主扩展。该系统通过集成知识图谱提取解析工具、rerank重新排序机制以及faiss向量数据库等技术,提高了检索效率和生成质量。
全球首个可遵循指令的重排序器,为企业级RAG系统提供精准信息排序
Contextual AI Reranker 是一款革命性的AI模型,专为解决企业级检索增强生成(RAG)系统中信息冲突和排序不准确的问题而设计。它能够根据用户提供的自然语言指令,对检索结果进行精准排序,确保最符合需求的信息优先展示。该产品基于先进的AI技术,经过行业标准BEIR基准测试和内部数据集验证,表现卓越。其主要优点包括高准确率、强大的指令遵循能力和灵活的定制化选项,适用于金融、技术、专业服务等多个领域。产品目前提供免费试用,并通过API形式接入,方便企业快速部署和使用。
基于大模型 RAG 知识库的知识图谱问答系统,支持多种大模型适配和本地部署。
语析Yuxi-Know 是一个基于大模型 RAG 知识库的知识图谱问答系统,采用 Llamaindex + VueJS + Flask + Neo4j 构建。它支持 OpenAI、国内主流大模型平台的模型调用以及本地 vllm 部署,能够实现知识库问答、知识图谱检索和联网检索等功能。该系统的主要优点是灵活适配多种模型、支持多种知识库格式以及强大的知识图谱集成能力。它适用于需要高效知识管理和智能问答的企业和研究机构,具有较高的技术先进性和实用性。
AI Mode 是谷歌搜索中的一项实验性生成式 AI 功能,可帮助用户解决复杂问题。
AI Mode 是谷歌搜索中的一项实验性功能,基于 Gemini 2.0 模型开发。它通过高级推理和多模态能力,为用户提供更深入、更全面的搜索结果。该功能旨在帮助用户更高效地处理复杂的多部分问题,并通过实时数据和知识图谱提供高质量的响应。AI Mode 的推出体现了谷歌在提升搜索体验方面的持续创新,同时也展示了生成式 AI 在信息检索中的应用潜力。
ViDoRAG 是一个结合视觉文档检索增强生成的动态迭代推理代理框架。
ViDoRAG 是阿里巴巴自然语言处理团队开发的一种新型多模态检索增强生成框架,专为处理视觉丰富文档的复杂推理任务设计。该框架通过动态迭代推理代理和高斯混合模型(GMM)驱动的多模态检索策略,显著提高了生成模型的鲁棒性和准确性。ViDoRAG 的主要优点包括高效处理视觉和文本信息、支持多跳推理以及可扩展性强。该框架适用于需要从大规模文档中检索和生成信息的场景,例如智能问答、文档分析和内容创作。其开源特性和灵活的模块化设计使其成为研究人员和开发者在多模态生成领域的重要工具。
用于多模态上下文中的检索增强生成的基准测试代码库。
M2RAG是一个用于多模态上下文中的检索增强生成的基准测试代码库。它通过多模态检索文档来回答问题,评估多模态大语言模型(MLLMs)在利用多模态上下文知识方面的能力。该模型在图像描述、多模态问答、事实验证和图像重排等任务上进行了评估,旨在提升模型在多模态上下文学习中的有效性。M2RAG为研究人员提供了一个标准化的测试平台,有助于推动多模态语言模型的发展。
一个用于构建Retrieval-Augmented Generation (RAG)应用的开源项目。
bRAG-langchain是一个开源项目,专注于Retrieval-Augmented Generation (RAG)技术的研究与应用。RAG是一种结合了检索和生成的AI技术,通过检索相关文档并生成回答,为用户提供更准确、更丰富的信息。该项目提供了从基础到高级的RAG实现指南,帮助开发者快速上手并构建自己的RAG应用。其主要优点是开源、灵活且易于扩展,适合各种需要自然语言处理和信息检索的应用场景。
Graphiti 是一个用于构建和查询动态时序知识图谱的工具,支持多种数据源和复杂关系的演变。
Graphiti 是一个专注于构建动态时序知识图谱的技术模型,旨在处理不断变化的信息和复杂的关系演变。它通过结合语义搜索和图算法,支持从非结构化文本和结构化 JSON 数据中提取知识,并能够进行时间点查询。Graphiti 是 Zep 内存层的核心技术,支持长期记忆和基于状态的推理,适用于需要动态数据处理和复杂任务自动化的应用场景,如销售、客户服务、健康、金融等领域。
从任何文本中提取知识图谱的人工智能工具。
kg-gen 是一个基于人工智能的工具,能够从普通文本中提取知识图谱。它支持处理小到单句话、大到长篇文档的文本输入,并且可以处理对话格式的消息。该工具利用先进的语言模型和结构化输出技术,能够帮助用户快速构建知识图谱,适用于自然语言处理、知识管理以及模型训练等领域。kg-gen 提供了灵活的接口和多种功能,旨在简化知识图谱的生成过程,提高效率。
KET-RAG 是一个结合知识图谱的检索增强型生成框架,用于高效文档索引和答案生成。
KET-RAG(Knowledge-Enhanced Text Retrieval Augmented Generation)是一个强大的检索增强型生成框架,结合了知识图谱技术。它通过多粒度索引框架(如知识图谱骨架和文本-关键词二分图)实现高效的知识检索和生成。该框架在降低索引成本的同时,显著提升了检索和生成质量,适用于大规模 RAG 应用场景。KET-RAG 基于 Python 开发,支持灵活的配置和扩展,适用于需要高效知识检索和生成的开发人员和研究人员。
wdoc 是一个强大的 RAG(检索增强生成)系统,用于处理和查询多种文件类型的文档。
wdoc 是由 Olicorne(一名医学生)开发的 RAG 系统,旨在通过检索增强生成技术解决文档查询和总结问题。它支持多种文件类型(如 PDF、网页、YouTube 视频等),并结合多种语言模型提供高召回率和高特异性的查询结果。wdoc 的主要优点包括强大的多文件类型支持、高效的检索能力和灵活的扩展性。它适用于研究人员、学生和专业人士,帮助他们快速处理大量信息。wdoc 目前处于开发阶段,开发者欢迎用户反馈和功能请求,以不断完善产品。
VideoRAG 是一个用于处理极长上下文视频的检索增强型生成框架。
VideoRAG 是一种创新的检索增强型生成框架,专门用于理解和处理极长上下文视频。它通过结合图驱动的文本知识锚定和层次化多模态上下文编码,实现了对无限制长度视频的理解。该框架能够动态构建知识图谱,保持多视频上下文的语义连贯性,并通过自适应多模态融合机制优化检索效率。VideoRAG 的主要优点包括高效的极长上下文视频处理能力、结构化的视频知识索引以及多模态检索能力,使其能够为复杂查询提供全面的回答。该框架在长视频理解领域具有重要的技术价值和应用前景。
一个用于在网站上提问的Chrome扩展程序,支持本地运行和向量存储。
Site RAG 是一款 Chrome 扩展程序,旨在通过自然语言处理技术帮助用户在浏览网页时快速获取问题答案。它支持将当前页面内容作为上下文进行查询,还能将整个网站内容索引到向量数据库中,以便后续进行检索增强生成(RAG)。该产品完全在本地浏览器运行,确保用户数据安全,同时支持连接本地运行的 Ollama 实例进行推理。它主要面向需要快速从网页内容中提取信息的用户,如开发者、研究人员和学生。目前该产品免费提供,适合希望在浏览网页时获得即时帮助的用户。
Data Commons 是一个由 Google 发起的公共数据整合与分析平台,致力于简化全球公共数据的探索过程。
Data Commons 是一个强大的公共数据平台,旨在通过整合全球公共数据,提供统一的知识图谱,帮助用户轻松探索和分析数据。它由 Google 发起,支持多种数据源的整合,并提供丰富的可视化工具和 API 接口,方便用户进行数据探索和研究。Data Commons 的主要优点是数据的标准化和统一化,用户可以通过其强大的工具快速获取和分析数据,无需复杂的预处理。此外,它还支持社区贡献,用户可以分享自己的分析和见解,共同推动数据科学的发展。Data Commons 适用于研究人员、数据分析师、政策制定者以及任何需要公共数据支持决策的群体,其免费的访问模式降低了数据使用的门槛,促进了数据的广泛传播和应用。
一个为RAG(检索增强生成)AI助手设计的React组件,可快速集成到Next.js应用中。
该产品是一个React组件,专为RAG(检索增强生成)AI助手设计。它结合了Upstash Vector进行相似性搜索、Together AI作为LLM(大型语言模型)以及Vercel AI SDK用于流式响应。这种组件化设计使得开发者可以快速将RAG能力集成到Next.js应用中,极大地简化了开发流程,同时提供了高度的可定制性。其主要优点包括响应式设计、支持流式响应、持久化聊天历史以及支持暗黑/浅色模式等。该组件主要面向需要在Web应用中集成智能聊天功能的开发者,尤其是那些使用Next.js框架的团队。它通过简化集成过程,降低了开发成本,同时提供了强大的功能。
一个简单的检索增强生成框架,使小型模型通过异构图索引和轻量级拓扑增强检索实现良好的RAG性能。
MiniRAG是一个针对小型语言模型设计的检索增强生成系统,旨在简化RAG流程并提高效率。它通过语义感知的异构图索引机制和轻量级的拓扑增强检索方法,解决了小型模型在传统RAG框架中性能受限的问题。该模型在资源受限的场景下具有显著优势,如在移动设备或边缘计算环境中。MiniRAG的开源特性也使其易于被开发者社区接受和改进。
为代码库定制的AI代理,帮助开发者进行调试、测试和系统设计等任务。
Potpie是一个面向开发者的技术平台,通过构建基于代码库的AI代理来帮助开发者进行调试、测试、系统设计、代码审查和文档生成等任务。该产品利用强大的知识图谱技术,使AI代理能够深入理解代码库的上下文,从而提供高精度的工程任务执行能力。Potpie的主要优点在于其高度定制化和易于集成的特点,能够显著提高开发效率和代码质量。产品提供免费试用,并且有开源版本可供选择。
Agentic Graph Language Assistant
GraphAgent是一个自动化代理流水线,旨在处理显式的图形依赖和隐式的图形增强语义相互依赖,以适应实际数据场景中的预测任务(例如节点分类)和生成任务(例如文本生成)。它由三个关键组件构成:构建知识图谱以反映复杂语义依赖的图形生成代理;解释不同用户查询并制定相应任务的计划代理;以及高效执行计划任务并自动化工具匹配和调用的执行代理。GraphAgent通过集成语言模型和图形语言模型来揭示复杂的关系信息和数据语义依赖。
知识增强型故事角色定制的统一世界模型
StoryWeaver是一个为知识增强型故事角色定制而设计的统一世界模型,旨在实现单一和多角色故事可视化。该模型基于AAAI 2025论文,能够通过统一的框架处理故事中角色的定制和可视化,这对于自然语言处理和人工智能领域具有重要意义。StoryWeaver的主要优点包括其能够处理复杂故事情境的能力,以及能够持续更新和扩展其功能。产品背景信息显示,该模型将不断更新arXiv论文,并添加更多实验结果。
开源的RAG应用日志工具
RAG-logger是一个为检索增强生成(Retrieval-Augmented Generation, RAG)应用设计的开源日志工具。它是一个轻量级的、针对RAG特定日志需求的开源替代方案,专注于为RAG应用提供全面的日志记录功能,包括查询跟踪、检索结果记录、LLM交互记录以及逐步性能监控。它采用基于JSON的日志格式,支持每日日志组织、自动文件管理和元数据丰富化。RAG-logger以其开源、轻量级和专注于RAG应用的特性,为开发者提供了一个有效的工具来监控和分析RAG应用的性能。
深度理解代码库的人工智能助手
Depth AI 是一款由工程师构建的人工智能产品,它通过构建代码库的知识图谱,能够回答深度技术问题,并支持在不同工作场景中部署定制化的AI助手。产品背景信息显示,Depth AI 旨在帮助工程师和开发团队更高效地理解和使用代码库,通过集成到现有的工具和工作流程中,如Slack、GitHub Copilot、Jira等,提高团队的生产力。产品的主要优点包括深度技术问题解答、全面的代码图谱理解、抽象推理能力以及潜在空间交互等。Depth AI 提供企业级的安全和合规特性,确保数据安全,并且不会使用客户数据进行模型训练。
7B参数的多语言文本生成模型
CohereForAI/c4ai-command-r7b-12-2024是一个7B参数的多语言模型,专注于推理、总结、问答和代码生成等高级任务。该模型支持检索增强生成(RAG)和工具使用,能够使用和组合多个工具来完成更复杂的任务。它在企业相关的代码用例上表现优异,支持23种语言。
快速高效的生成型AI模型
Command R7B是Cohere公司推出的一款高性能、可扩展的大型语言模型(LLM),专为企业级应用设计。它在保持较小模型体积的同时,提供了一流的速度、效率和质量,能够在普通的GPU、边缘设备甚至CPU上部署,大幅降低了AI应用的生产部署成本。Command R7B在多语言支持、引用验证检索增强生成(RAG)、推理、工具使用和代理行为等方面表现出色,特别适合需要优化速度、成本性能和计算资源的企业使用案例。
将各种文件类型转换为Markdown格式的Python库
E2M是一个Python库,能够解析并转换多种文件类型到Markdown格式。它采用了解析器-转换器架构,支持包括doc、docx、epub、html、htm、url、pdf、ppt、pptx、mp3和m4a等多种文件格式的转换。E2M项目的最终目标是为检索增强生成(RAG)和模型训练或微调提供高质量的数据。
利用视觉语言模型的文档检索系统
vision-is-all-you-need是一个展示Vision RAG (V-RAG)架构的演示项目。V-RAG架构使用视觉语言模型(VLM)直接将PDF文件页面(或其他文档)嵌入为向量,无需繁琐的分块处理。该技术的重要性在于它能够大幅提高文档检索的效率和准确性,特别是在处理大量数据时。产品背景信息显示,这是一个利用最新人工智能技术,提高文档处理能力的创新工具。目前,该项目是开源的,可以免费使用。
一个用于可视化和探索微软GraphRAG工具的网络工具。
GraphRAG Visualizer是一个基于网络的工具,旨在可视化和探索微软GraphRAG工具产生的数据。GraphRAG是微软开发的一种用于生成图结构数据的技术,GraphRAG Visualizer通过让用户上传parquet文件,无需额外软件或脚本即可轻松查看和分析数据。该工具的主要优点包括图形可视化、数据表格展示、搜索功能以及本地处理数据,确保数据安全和隐私。
开源知识图谱工作室,助力构建动态图谱AI工作流
WhyHow Knowledge Graph Studio是一个开源平台,旨在简化创建和管理RAG-native知识图谱的过程。该平台提供基于规则的实体解析、模块化图构建、灵活的数据摄取以及API优先设计,并支持SDK。它基于NoSQL数据库构建,提供灵活、可扩展的存储层,使复杂关系的数据检索和遍历变得容易。该平台适用于处理结构化和非结构化数据,构建探索性图谱或高度模式化约束图谱,旨在实现规模化和灵活性,适用于实验和大规模使用。
开源本地RAG,集成ChatGPT和MCP能力
Minima是一个开源的、完全本地化的RAG(Retrieval-Augmented Generation)模型,具备与ChatGPT和MCP(Model Context Protocol)集成的能力。它支持三种模式:完全本地安装、通过ChatGPT查询本地文档以及使用Anthropic Claude查询本地文件。Minima的主要优点包括本地化处理数据,保护隐私,以及能够利用强大的语言模型来增强检索和生成任务。产品背景信息显示,Minima支持多种文件格式,并允许用户自定义配置以适应不同的使用场景。Minima是免费开源的,定位于需要本地化AI解决方案的开发者和企业。
© 2025 AIbase 备案号:闽ICP备08105208号-14