需求人群:
适合学生、自学者和备考考试的人群,帮助他们更有效地组织学习内容,提高学习效率。
使用场景示例:
学生可以利用SophistAI整理复杂的课程内容,更好地理解知识点。
自学者可以通过SophistAI探索深度学习主题,提高学习效率。
备考考试的人可以使用SophistAI跟踪学习进度,有针对性地复习知识点。
产品特色:
将课程大纲转化为交互式知识图谱
提供与主题相关的详细文章
智能进度追踪功能,标记已完成的主题
生成子主题并保持整体概览
自动完成子主题,进度双向流动
探索子主题,同时保持大局观
使用教程:
登录SophistAI网站
输入你的课程大纲
浏览交互式知识图谱,阅读详细文章
使用智能进度追踪功能标记已完成主题
探索子主题,保持整体概览,提高学习效率
浏览量:18
将课程大纲转化为交互式知识图谱,提高学习效率,帮助准备考试。
SophistAI是一个AI驱动的学习助手,将混乱的学习材料转化为结构化的交互式知识图谱,帮助用户更高效地学习和备考。它提供了智能进度追踪、深度挖掘子主题、自动完成进度等功能。
多模态知识图谱补全工具
MyGO是一个用于多模态知识图谱补全的工具,它通过将离散模态信息作为细粒度的标记来处理,以提高补全的准确性。MyGO利用transformers库对文本标记进行嵌入,进而在多模态数据集上进行训练和评估。它支持自定义数据集,并且提供了训练脚本以复现实验结果。
提高大学生自学效率和质量的智能学习助手
夸克App推出的AI学习助手基于自研大模型,通过智能化的解题思路和讲解方式,提升大学生自学效率和质量。采用夸克宝宝的虚拟形象进行题目讲解,提供“考点分析”“详解步骤”“答案总结”等详细内容。并通过夸克网盘实现学习资料备份和使用,以及夸克扫描王提取核心复习内容。覆盖英语等学科的选择题、填空题、阅读题等常考题型,后续将加入数学等学科。
基于知识图谱的智能问答系统。
Fact Finder 是一个开源的智能问答系统,它使用语言模型和知识图谱来生成自然语言回答和提供证据。该系统通过调用语言模型生成Cypher查询,查询知识图谱以获取答案,并使用另一个语言模型调用生成最终的自然语言回答。Fact Finder 的主要优点包括能够提供透明性,允许用户查看查询和证据,以及通过可视化子图提供直观的证据。
将知识图谱与Obsidian笔记整合,实现问答、链接预测等功能
ODIN是一个Obsidian的插件,它可以将用户的笔记知识图谱化,从而实现智能问答、链接预测等功能,帮助用户管理知识点,建立全面的知识体系。ODIN的关键功能包括:基于LLM的智能问答,可以直观查询笔记中的知识点;全局笔记网络可视化,以知识图的形式呈现笔记内容;基于语义的链接预测,自动在笔记间建立关联;基于语义的节点提示,发现笔记中的关键知识点等。ODIN可以大幅提升Obsidian在知识管理方面的能力,是作者构建个人知识管理系统的不二之选。
智能语义,知识图谱,AI+内容创作
智搜AI是一款基于人工智能技术的内容创作工具,通过智能语义和知识图谱技术,帮助用户快速生成高质量的文章、PPT等内容,提高生产力。同时,智搜AI还提供多种解决方案,包括AI+媒体、AI+金融等,满足不同领域的需求。
由知识图谱引擎驱动的创新Agent框架
muAgent是一个创新的Agent框架,由知识图谱引擎驱动,支持多Agent编排和协同技术。它利用LLM+EKG(Eventic Knowledge Graph 行业知识承载)技术,结合FunctionCall、CodeInterpreter等,通过画布式拖拽和轻文字编写,实现复杂SOP流程的自动化。muAgent兼容市面上各类Agent框架,具备复杂推理、在线协同、人工交互、知识即用等核心功能。该框架已在蚂蚁集团多个复杂DevOps场景中得到验证。
利用知识图谱和文档网络增强语言模型性能
Knowledge Graph RAG 是一个开源的Python库,它通过创建知识图谱和文档网络来增强大型语言模型(LLM)的性能。这个库允许用户通过图谱结构来搜索和关联信息,从而为语言模型提供更丰富的上下文。它主要应用于自然语言处理领域,尤其是在文档检索和信息抽取任务中。
将文本转换为知识图谱的Python工具。
knowledge_graph_maker是一个Python库,能够根据给定的本体论将任意文本转换为知识图谱。知识图谱是一种语义网络,代表现实世界实体之间的网络和它们之间的关系。该库通过图算法和中心性计算,帮助用户深入分析文本内容,实现概念之间的连接性分析,以及通过图检索增强生成(GRAG)技术,提升与文本的交流深度。
构建知识图谱的Neo4j应用
llm-graph-builder是一个利用大型语言模型(如OpenAI、Gemini等)从非结构化数据(PDF、DOCS、TXT、YouTube视频、网页等)中提取节点、关系及其属性,并使用Langchain框架创建结构化知识图谱的应用程序。它支持从本地机器、GCS或S3存储桶或网络资源上传文件,选择LLM模型并生成知识图谱。
基于大模型 RAG 知识库的知识图谱问答系统,支持多种大模型适配和本地部署。
语析Yuxi-Know 是一个基于大模型 RAG 知识库的知识图谱问答系统,采用 Llamaindex + VueJS + Flask + Neo4j 构建。它支持 OpenAI、国内主流大模型平台的模型调用以及本地 vllm 部署,能够实现知识库问答、知识图谱检索和联网检索等功能。该系统的主要优点是灵活适配多种模型、支持多种知识库格式以及强大的知识图谱集成能力。它适用于需要高效知识管理和智能问答的企业和研究机构,具有较高的技术先进性和实用性。
利用大型语言模型增量构建知识图谱
iText2KG是一个Python包,旨在利用大型语言模型从文本文档中提取实体和关系,增量构建一致的知识图谱。它具备零样本能力,允许在没有特定训练的情况下跨不同领域进行知识提取。该包包括文档蒸馏、实体提取和关系提取模块,确保实体和关系得到解决和唯一性。它通过Neo4j提供知识图谱的可视化表示,支持交互式探索和分析结构化数据。
从任何文本中提取知识图谱的人工智能工具。
kg-gen 是一个基于人工智能的工具,能够从普通文本中提取知识图谱。它支持处理小到单句话、大到长篇文档的文本输入,并且可以处理对话格式的消息。该工具利用先进的语言模型和结构化输出技术,能够帮助用户快速构建知识图谱,适用于自然语言处理、知识管理以及模型训练等领域。kg-gen 提供了灵活的接口和多种功能,旨在简化知识图谱的生成过程,提高效率。
开源知识图谱工作室,助力构建动态图谱AI工作流
WhyHow Knowledge Graph Studio是一个开源平台,旨在简化创建和管理RAG-native知识图谱的过程。该平台提供基于规则的实体解析、模块化图构建、灵活的数据摄取以及API优先设计,并支持SDK。它基于NoSQL数据库构建,提供灵活、可扩展的存储层,使复杂关系的数据检索和遍历变得容易。该平台适用于处理结构化和非结构化数据,构建探索性图谱或高度模式化约束图谱,旨在实现规模化和灵活性,适用于实验和大规模使用。
开源知识图谱构建模型,成本低廉
Triplex是一个创新的开源模型,能够将大量非结构化数据转换为结构化数据,其在知识图谱构建方面的表现超越了gpt-4o,且成本仅为其十分之一。它通过高效的将非结构化文本转换为知识图谱的构建基础——语义三元组,大幅降低了知识图谱的生成成本。
基于人工智能生成及查询不断扩展的知识图谱的概念证明
MindGraph是一个开源、API优先的基于图形的项目原型,旨在实现自然语言交互(输入和输出)。它可作为构建和定制自己的CRM解决方案的模板,重点是易于集成和可扩展性。主要功能包括:实体管理、集成触发器、搜索功能、人工智能整备。它采用模块化架构,通过集成管理器动态注册和执行各种集成函数,使其具有无缝集成人工智能功能的能力。它支持灵活的数据库集成,包括内存数据库和云数据库NexusDB。再加上基于模式的知识图谱创建,使其能够自动从自然语言输入中生成结构化数据。
AI驱动的技能平台,自动生成交互式课程和全球知识图谱
NOLEJ是一个由AI引擎驱动的去中心化技能平台,可以自动生成交互式课程和全球知识图谱。它提供一系列功能,帮助个人教育者、学校/机构和企业创建、管理和共享教育内容。NOLEJ的主要优势在于自动化课程生成、智能推荐和全球知识图谱的构建。定价方面,请访问官方网站获取详细信息。NOLEJ适用于个人学习、教育机构和企业培训等场景。
高性能知识图谱数据库与推理引擎
RDFox 是由牛津大学计算机科学系的三位教授基于数十年知识表示与推理(KRR)研究开发的规则驱动人工智能技术。其独特之处在于:1. 强大的AI推理能力:RDFox 能够像人类一样从数据中创建知识,基于事实进行推理,确保结果的准确性和可解释性。2. 高性能:作为唯一在内存中运行的知识图谱,RDFox 在基准测试中的表现远超其他图技术,能够处理数十亿三元组的复杂数据存储。3. 可扩展部署:RDFox 具有极高的效率和优化的占用空间,可以嵌入边缘和移动设备,作为 AI 应用的大脑独立运行。4. 企业级特性:包括高性能、高可用性、访问控制、可解释性、人类般的推理能力、数据导入和 API 支持等。5. 增量推理:RDFox 的推理功能在数据添加或删除时即时更新,不影响性能,无需重新加载。
一个实验性的UI,用于将文本转换为知识图谱。
prettygraph是一个基于Python的Web应用程序,由@yoheinakajima开发,展示了一种新的UI模式,用于将文本输入动态地转换为知识图谱。该项目是一个快速原型,旨在提供一种简单的UI想法,通过实时更新UI中的文本高亮来生成知识图谱。
利用本地Llama模型构建知识图谱,探索相关问题和答案。
Local Knowledge Graph是一个基于Flask的Web应用程序,它使用本地Llama语言模型来处理用户查询,生成逐步推理,并以交互式知识图谱的形式可视化思考过程。它还能根据语义相似性找到并显示相关问题和答案。该应用程序的主要优点包括实时显示推理过程、动态知识图谱可视化、计算并显示最强推理路径、以及基于语义相似性的相关问答。
智能学习助手
CheatGPT是一个AI驱动的学习工具,旨在帮助学生在学术上取得优异成绩。它能够提供即时问题解答、深入解释、考试辅助、英语翻译、语法纠错等功能。利用GPT-4的强大能力,为学习提供更智能的体验。
基于知识图谱的检索增强生成框架,赋能大型语言模型处理知识密集型任务
KG-RAG是一个任务无关的框架,它结合知识图谱的显性知识和大型语言模型的隐性知识。这里,我们利用一个巨大的生物医学知识图谱SPOKE作为生物医学上下文的提供者。KG-RAG的主要特征是它从SPOKE知识图谱中提取“与提示相关的上下文”,这被定义为响应用户提示所需的最小上下文。
从文本中提取知识图谱三元组的管道工具
Graphusion是一个用于从文本中提取知识图谱三元组的管道工具。它通过一系列步骤,包括概念提取、候选三元组提取和三元组融合,来构建知识图谱。这个工具的重要性在于它能够帮助研究人员和开发者自动化地从大量文本数据中提取结构化信息,进而支持知识管理和数据科学项目。Graphusion的主要优点包括其自动化处理能力、对不同数据集的适应性以及灵活的配置选项。产品背景信息显示,Graphusion是由tdurieux开发的,可以在GitHub上找到相关代码和文档。目前,该工具是免费的,但具体的定价策略可能会根据开发者的更新和维护情况而变化。
智能学习助手,快速生成学习材料
StudyScriby是一款智能学习助手,使用AI技术从课程视频中转录、总结和生成学习材料。帮助学生节省时间、提升理解能力和学术成绩。提供转录和总结课程内容、生成例题、生成记忆卡片、提供个性化辅导等功能。根据使用时长计费。
人工智能入门教程网站,提供全面的机器学习与深度学习知识。
该网站由作者从 2015 年开始学习机器学习和深度学习,整理并编写的一系列实战教程。涵盖监督学习、无监督学习、深度学习等多个领域,既有理论推导,又有代码实现,旨在帮助初学者全面掌握人工智能的基础知识和实践技能。网站拥有独立域名,内容持续更新,欢迎大家关注和学习。
学习、研究、发现知识的AI助手
Hevolve AI是一款AI助手,可以帮助用户学习、研究和发现知识。它提供个性化的学习体验、与用户进行人性化互动,并支持多语言教学。Hevolve AI可以根据用户的学习进度提供适时的内容,并通过互动评估和实时反馈提升学习效果。它还提供与教材互动学习、自适应内容传递等功能,致力于让学习变得简单、易用和愉快。
智能学习助手,提升学生学习效率
Student AI是一个专为学生设计的智能学习助手,它利用人工智能技术提供个性化学习建议、作业帮助和考试准备。该平台旨在通过智能分析学生的学习习惯和理解能力,提供定制化的学习资源和辅导。
© 2025 AIbase 备案号:闽ICP备08105208号-14