需求人群:
"目标受众主要是开发者和数据科学家,他们需要构建或使用智能问答系统来提高信息检索的准确性和效率。Fact Finder 适合他们因为它提供了一种结合自然语言处理和知识图谱的方法来生成准确和有证据支持的答案。"
使用场景示例:
开发者使用Fact Finder 集成到自己的应用程序中,提供基于知识图谱的问答功能。
数据科学家利用Fact Finder 分析大规模数据集,提取和验证信息。
教育机构采用Fact Finder 作为教学工具,帮助学生理解复杂概念和数据。
产品特色:
使用语言模型生成Cypher查询以查询知识图谱。
对生成的Cypher查询进行预处理,包括格式化、转换为小写和替换同义词。
查询知识图谱并展示查询结果作为证据。
使用语言模型生成最终的自然语言回答。
生成可视化子图作为用户界面的证据展示。
支持环境变量设置和UI运行参数配置。
兼容外部APIs,如OpenAI、Semantic Scholar和Bayer's Linnaeus。
使用教程:
1. 设置PrimeKG Neo4j实例,参考相关文档。
2. 安装依赖,包括必要的外部API密钥。
3. 设置环境变量,配置系统运行参数。
4. 运行用户界面,根据需要添加额外的参数。
5. 输入用户问题,系统将生成Cypher查询。
6. 系统查询知识图谱并返回结果。
7. 查看用户界面上展示的自然语言回答和可视化证据。
8. 根据反馈调整查询或参数,优化问答结果。
浏览量:85
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
基于知识图谱的智能问答系统。
Fact Finder 是一个开源的智能问答系统,它使用语言模型和知识图谱来生成自然语言回答和提供证据。该系统通过调用语言模型生成Cypher查询,查询知识图谱以获取答案,并使用另一个语言模型调用生成最终的自然语言回答。Fact Finder 的主要优点包括能够提供透明性,允许用户查看查询和证据,以及通过可视化子图提供直观的证据。
利用知识图谱和文档网络增强语言模型性能
Knowledge Graph RAG 是一个开源的Python库,它通过创建知识图谱和文档网络来增强大型语言模型(LLM)的性能。这个库允许用户通过图谱结构来搜索和关联信息,从而为语言模型提供更丰富的上下文。它主要应用于自然语言处理领域,尤其是在文档检索和信息抽取任务中。
利用大型语言模型增量构建知识图谱
iText2KG是一个Python包,旨在利用大型语言模型从文本文档中提取实体和关系,增量构建一致的知识图谱。它具备零样本能力,允许在没有特定训练的情况下跨不同领域进行知识提取。该包包括文档蒸馏、实体提取和关系提取模块,确保实体和关系得到解决和唯一性。它通过Neo4j提供知识图谱的可视化表示,支持交互式探索和分析结构化数据。
基于知识图谱的检索增强生成框架,赋能大型语言模型处理知识密集型任务
KG-RAG是一个任务无关的框架,它结合知识图谱的显性知识和大型语言模型的隐性知识。这里,我们利用一个巨大的生物医学知识图谱SPOKE作为生物医学上下文的提供者。KG-RAG的主要特征是它从SPOKE知识图谱中提取“与提示相关的上下文”,这被定义为响应用户提示所需的最小上下文。
从任何文本中提取知识图谱的人工智能工具。
kg-gen 是一个基于人工智能的工具,能够从普通文本中提取知识图谱。它支持处理小到单句话、大到长篇文档的文本输入,并且可以处理对话格式的消息。该工具利用先进的语言模型和结构化输出技术,能够帮助用户快速构建知识图谱,适用于自然语言处理、知识管理以及模型训练等领域。kg-gen 提供了灵活的接口和多种功能,旨在简化知识图谱的生成过程,提高效率。
基于人工智能生成及查询不断扩展的知识图谱的概念证明
MindGraph是一个开源、API优先的基于图形的项目原型,旨在实现自然语言交互(输入和输出)。它可作为构建和定制自己的CRM解决方案的模板,重点是易于集成和可扩展性。主要功能包括:实体管理、集成触发器、搜索功能、人工智能整备。它采用模块化架构,通过集成管理器动态注册和执行各种集成函数,使其具有无缝集成人工智能功能的能力。它支持灵活的数据库集成,包括内存数据库和云数据库NexusDB。再加上基于模式的知识图谱创建,使其能够自动从自然语言输入中生成结构化数据。
基于大模型 RAG 知识库的知识图谱问答系统,支持多种大模型适配和本地部署。
语析Yuxi-Know 是一个基于大模型 RAG 知识库的知识图谱问答系统,采用 Llamaindex + VueJS + Flask + Neo4j 构建。它支持 OpenAI、国内主流大模型平台的模型调用以及本地 vllm 部署,能够实现知识库问答、知识图谱检索和联网检索等功能。该系统的主要优点是灵活适配多种模型、支持多种知识库格式以及强大的知识图谱集成能力。它适用于需要高效知识管理和智能问答的企业和研究机构,具有较高的技术先进性和实用性。
自然语言处理模型
LLaMA Pro 是一种用于大规模自然语言处理的模型。通过使用 Transformer 模块的扩展,该模型可以在不遗忘旧知识的情况下,高效而有效地利用新语料库来提升模型的知识。LLaMA Pro 具有出色的性能,在通用任务、编程和数学方面都表现出色。它是基于 LLaMA2-7B 进行初始化的通用模型。LLaMA Pro 和其指导类模型(LLaMA Pro-Instruct)在各种基准测试中均取得了先进的性能,展示了在智能代理中进行推理和处理各种任务的巨大潜力。该模型为将自然语言和编程语言进行整合提供了宝贵的见解,为在各种环境中有效运作的先进语言代理的开发奠定了坚实的基础。
将知识图谱与Obsidian笔记整合,实现问答、链接预测等功能
ODIN是一个Obsidian的插件,它可以将用户的笔记知识图谱化,从而实现智能问答、链接预测等功能,帮助用户管理知识点,建立全面的知识体系。ODIN的关键功能包括:基于LLM的智能问答,可以直观查询笔记中的知识点;全局笔记网络可视化,以知识图的形式呈现笔记内容;基于语义的链接预测,自动在笔记间建立关联;基于语义的节点提示,发现笔记中的关键知识点等。ODIN可以大幅提升Obsidian在知识管理方面的能力,是作者构建个人知识管理系统的不二之选。
智能问答助手
Ask Seneca是一款智能问答助手,通过自然语言处理技术,为用户提供准确、快速的答案。它具有高效的搜索能力,能够回答各种问题。Ask Seneca定位于提供便捷的知识查询服务,用户可以通过输入问题或关键词来获取相关信息。它可以广泛应用于学习、工作和生活中的各个领域。
多模态知识图谱补全工具
MyGO是一个用于多模态知识图谱补全的工具,它通过将离散模态信息作为细粒度的标记来处理,以提高补全的准确性。MyGO利用transformers库对文本标记进行嵌入,进而在多模态数据集上进行训练和评估。它支持自定义数据集,并且提供了训练脚本以复现实验结果。
智能语义,知识图谱,AI+内容创作
智搜AI是一款基于人工智能技术的内容创作工具,通过智能语义和知识图谱技术,帮助用户快速生成高质量的文章、PPT等内容,提高生产力。同时,智搜AI还提供多种解决方案,包括AI+媒体、AI+金融等,满足不同领域的需求。
先进的自然语言处理模型
MiscNinja是一种先进的自然语言处理模型,具有强大的文本生成和理解能力。其优势在于可以应用于多种领域,如智能对话系统、文本摘要、自动翻译等。定价根据使用情况而定,定位于为开发者和企业提供强大的自然语言处理解决方案。
构建知识图谱的Neo4j应用
llm-graph-builder是一个利用大型语言模型(如OpenAI、Gemini等)从非结构化数据(PDF、DOCS、TXT、YouTube视频、网页等)中提取节点、关系及其属性,并使用Langchain框架创建结构化知识图谱的应用程序。它支持从本地机器、GCS或S3存储桶或网络资源上传文件,选择LLM模型并生成知识图谱。
KET-RAG 是一个结合知识图谱的检索增强型生成框架,用于高效文档索引和答案生成。
KET-RAG(Knowledge-Enhanced Text Retrieval Augmented Generation)是一个强大的检索增强型生成框架,结合了知识图谱技术。它通过多粒度索引框架(如知识图谱骨架和文本-关键词二分图)实现高效的知识检索和生成。该框架在降低索引成本的同时,显著提升了检索和生成质量,适用于大规模 RAG 应用场景。KET-RAG 基于 Python 开发,支持灵活的配置和扩展,适用于需要高效知识检索和生成的开发人员和研究人员。
AI自然语言处理模型
Powerups AI是一款基于人工智能技术的自然语言处理模型,具有极高的语言理解和生成能力。该模型可以用于文本生成、语言翻译、对话生成等多个领域,可以帮助用户快速生成高质量的文本内容,提高工作效率。
快速构建自然语言处理应用
GradientJ是一个用于测试、部署和管理自然语言处理应用的平台。它基于大型语言模型如GPT-4,提供快速构建NLP应用的能力。用户可以使用GradientJ开发自定义的文本生成、问答系统、聊天机器人等NLP应用。GradientJ提供简单易用的接口和工具,让开发者能够快速上手并实现自己的用例。定价方案灵活,适合个人开发者和企业用户。
整合所有资料,让 AI 搜索回答,提升知识获取效率。
飞书知识问答是一款基于 AI 的知识管理工具,能够整合用户上传的各类资料,如 PDF、Word、PowerPoint 等,通过 AI 搜索技术快速提供精准答案。该产品主要面向企业用户和知识工作者,帮助他们高效管理和检索知识,提升工作效率。其技术优势在于强大的 AI 搜索算法和对多种文件格式的支持,能够快速解析和理解用户上传的内容,提供准确的问答服务。
由知识图谱引擎驱动的创新Agent框架
muAgent是一个创新的Agent框架,由知识图谱引擎驱动,支持多Agent编排和协同技术。它利用LLM+EKG(Eventic Knowledge Graph 行业知识承载)技术,结合FunctionCall、CodeInterpreter等,通过画布式拖拽和轻文字编写,实现复杂SOP流程的自动化。muAgent兼容市面上各类Agent框架,具备复杂推理、在线协同、人工交互、知识即用等核心功能。该框架已在蚂蚁集团多个复杂DevOps场景中得到验证。
将文本转换为知识图谱的Python工具。
knowledge_graph_maker是一个Python库,能够根据给定的本体论将任意文本转换为知识图谱。知识图谱是一种语义网络,代表现实世界实体之间的网络和它们之间的关系。该库通过图算法和中心性计算,帮助用户深入分析文本内容,实现概念之间的连接性分析,以及通过图检索增强生成(GRAG)技术,提升与文本的交流深度。
QAnything是一个支持任意文件格式和数据库的本地知识问答系统
QAnything是一个支持任意文件格式和数据库的本地知识问答系统,可以简单地导入任意本地存储的各种格式的文件,并得到准确、快速、可靠的问答。目前支持的格式包括:PDF、Word(doc/docx)、PPT、Markdown、Eml、TXT、图片(jpg、png等)、网页链接等,后续会持续新增支持的格式。QAnything具有数据安全性,支持断网安装使用;支持中英文跨语言问答;支持海量数据问答,解决大规模数据检索退化问题;直接可用于企业应用的高性能产品级系统;一键安装部署,开箱即用的用户友好体验;支持多知识库问答等功能。
生成式商业智能产品,支持自然语言数据分析
百度智能云有解(GBI)是一款生成式商业智能产品。它将文心大模型融入BI场景,支持通过自然语言对话式交互执行数据查询与分析,实现"任意表,随便问",为企业客户建立"对话即洞察"的数据分析新范式。主要功能包括任意表格即传即问、自然语言数据查询、专业知识注入和复杂计算逻辑等。产品优势在于打破传统预置模版限制,支持跨领域迁移应用场景。定价暂未公开,根据不同接入方案会有差异。
将课程大纲转化为交互式知识图谱,提高学习效率,帮助准备考试。
SophistAI是一个AI驱动的学习助手,将混乱的学习材料转化为结构化的交互式知识图谱,帮助用户更高效地学习和备考。它提供了智能进度追踪、深度挖掘子主题、自动完成进度等功能。
强大的语言模型,支持多种自然语言处理任务。
GLM-4-32B 是一个高性能的生成语言模型,旨在处理多种自然语言任务。它通过深度学习技术训练而成,能够生成连贯的文本和回答复杂问题。该模型适用于学术研究、商业应用和开发者,价格合理,定位精准,是自然语言处理领域的领先产品。
一个用于自然语言处理的先进模型
Meta-spirit-lm是由Meta公司开发的一款先进的自然语言处理模型,它在Hugging Face平台上发布。这款模型在处理语言相关的任务时表现出色,如文本生成、翻译、问答等。它的重要性在于能够理解和生成自然语言,极大地推动了人工智能在语言理解领域的进步。该模型在开源社区中受到广泛关注,可以用于研究和商业用途,但需遵守FAIR Noncommercial Research License。
开源知识图谱工作室,助力构建动态图谱AI工作流
WhyHow Knowledge Graph Studio是一个开源平台,旨在简化创建和管理RAG-native知识图谱的过程。该平台提供基于规则的实体解析、模块化图构建、灵活的数据摄取以及API优先设计,并支持SDK。它基于NoSQL数据库构建,提供灵活、可扩展的存储层,使复杂关系的数据检索和遍历变得容易。该平台适用于处理结构化和非结构化数据,构建探索性图谱或高度模式化约束图谱,旨在实现规模化和灵活性,适用于实验和大规模使用。
开源知识图谱构建模型,成本低廉
Triplex是一个创新的开源模型,能够将大量非结构化数据转换为结构化数据,其在知识图谱构建方面的表现超越了gpt-4o,且成本仅为其十分之一。它通过高效的将非结构化文本转换为知识图谱的构建基础——语义三元组,大幅降低了知识图谱的生成成本。
AI驱动的技能平台,自动生成交互式课程和全球知识图谱
NOLEJ是一个由AI引擎驱动的去中心化技能平台,可以自动生成交互式课程和全球知识图谱。它提供一系列功能,帮助个人教育者、学校/机构和企业创建、管理和共享教育内容。NOLEJ的主要优势在于自动化课程生成、智能推荐和全球知识图谱的构建。定价方面,请访问官方网站获取详细信息。NOLEJ适用于个人学习、教育机构和企业培训等场景。
© 2025 AIbase 备案号:闽ICP备08105208号-14