需求人群:
["研究人员和数据科学家:可以利用prettygraph快速将文本数据转换为可视化的知识图谱,以便于分析和理解。","教育工作者:在教学过程中,prettygraph可以作为展示复杂概念和关系的工具。","开发者:对于希望在他们的应用程序中集成知识图谱生成功能的开发者,prettygraph提供了一个实验性的起点。"]
使用场景示例:
将学术论文的摘要转换为知识图谱,帮助研究人员快速把握文章要点。
在教育领域,将教科书内容转换为图谱,辅助学生记忆和理解。
商业智能中,将市场研究报告转换为图谱,揭示市场趋势和竞争关系。
产品特色:
文本到图谱生成:将用户输入的文本转换为知识图谱。
动态UI更新:每个以句号结束的文本输入都会更新图谱。
彩色编码可视化:图谱中的节点和边进行彩色编码,以便于视觉区分。
实时更新:在每个句号后实时更新图谱,提供交互式体验。
依赖管理:使用Poetry进行依赖管理,简化项目设置。
环境变量配置:需要设置OPENAI_API_KEY环境变量以运行应用程序。
开源许可:项目遵循MIT许可证,开放源代码。
使用教程:
克隆仓库:使用git命令克隆prettygraph的代码库到本地。
进入项目目录:通过命令行导航到克隆的prettygraph项目文件夹。
安装依赖:使用Poetry命令安装项目所需的依赖。
配置环境变量:在项目根目录创建.env文件,并添加OPENAI_API_KEY。
运行应用:使用poetry run python main.py启动Flask应用程序。
访问应用:在浏览器中打开http://localhost/,开始输入文本并观察图谱的实时更新。
浏览量:65
最新流量情况
月访问量
4.75m
平均访问时长
00:06:34
每次访问页数
6.10
跳出率
36.20%
流量来源
直接访问
52.19%
自然搜索
32.64%
邮件
0.04%
外链引荐
12.93%
社交媒体
2.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.32%
德国
3.68%
印度
9.04%
俄罗斯
3.92%
美国
19.25%
一个实验性的UI,用于将文本转换为知识图谱。
prettygraph是一个基于Python的Web应用程序,由@yoheinakajima开发,展示了一种新的UI模式,用于将文本输入动态地转换为知识图谱。该项目是一个快速原型,旨在提供一种简单的UI想法,通过实时更新UI中的文本高亮来生成知识图谱。
从任何文本中提取知识图谱的人工智能工具。
kg-gen 是一个基于人工智能的工具,能够从普通文本中提取知识图谱。它支持处理小到单句话、大到长篇文档的文本输入,并且可以处理对话格式的消息。该工具利用先进的语言模型和结构化输出技术,能够帮助用户快速构建知识图谱,适用于自然语言处理、知识管理以及模型训练等领域。kg-gen 提供了灵活的接口和多种功能,旨在简化知识图谱的生成过程,提高效率。
将文本转换为知识图谱的Python工具。
knowledge_graph_maker是一个Python库,能够根据给定的本体论将任意文本转换为知识图谱。知识图谱是一种语义网络,代表现实世界实体之间的网络和它们之间的关系。该库通过图算法和中心性计算,帮助用户深入分析文本内容,实现概念之间的连接性分析,以及通过图检索增强生成(GRAG)技术,提升与文本的交流深度。
基于大模型 RAG 知识库的知识图谱问答系统,支持多种大模型适配和本地部署。
语析Yuxi-Know 是一个基于大模型 RAG 知识库的知识图谱问答系统,采用 Llamaindex + VueJS + Flask + Neo4j 构建。它支持 OpenAI、国内主流大模型平台的模型调用以及本地 vllm 部署,能够实现知识库问答、知识图谱检索和联网检索等功能。该系统的主要优点是灵活适配多种模型、支持多种知识库格式以及强大的知识图谱集成能力。它适用于需要高效知识管理和智能问答的企业和研究机构,具有较高的技术先进性和实用性。
AI Mode 是谷歌搜索中的一项实验性生成式 AI 功能,可帮助用户解决复杂问题。
AI Mode 是谷歌搜索中的一项实验性功能,基于 Gemini 2.0 模型开发。它通过高级推理和多模态能力,为用户提供更深入、更全面的搜索结果。该功能旨在帮助用户更高效地处理复杂的多部分问题,并通过实时数据和知识图谱提供高质量的响应。AI Mode 的推出体现了谷歌在提升搜索体验方面的持续创新,同时也展示了生成式 AI 在信息检索中的应用潜力。
Graphiti 是一个用于构建和查询动态时序知识图谱的工具,支持多种数据源和复杂关系的演变。
Graphiti 是一个专注于构建动态时序知识图谱的技术模型,旨在处理不断变化的信息和复杂的关系演变。它通过结合语义搜索和图算法,支持从非结构化文本和结构化 JSON 数据中提取知识,并能够进行时间点查询。Graphiti 是 Zep 内存层的核心技术,支持长期记忆和基于状态的推理,适用于需要动态数据处理和复杂任务自动化的应用场景,如销售、客户服务、健康、金融等领域。
KET-RAG 是一个结合知识图谱的检索增强型生成框架,用于高效文档索引和答案生成。
KET-RAG(Knowledge-Enhanced Text Retrieval Augmented Generation)是一个强大的检索增强型生成框架,结合了知识图谱技术。它通过多粒度索引框架(如知识图谱骨架和文本-关键词二分图)实现高效的知识检索和生成。该框架在降低索引成本的同时,显著提升了检索和生成质量,适用于大规模 RAG 应用场景。KET-RAG 基于 Python 开发,支持灵活的配置和扩展,适用于需要高效知识检索和生成的开发人员和研究人员。
VideoRAG 是一个用于处理极长上下文视频的检索增强型生成框架。
VideoRAG 是一种创新的检索增强型生成框架,专门用于理解和处理极长上下文视频。它通过结合图驱动的文本知识锚定和层次化多模态上下文编码,实现了对无限制长度视频的理解。该框架能够动态构建知识图谱,保持多视频上下文的语义连贯性,并通过自适应多模态融合机制优化检索效率。VideoRAG 的主要优点包括高效的极长上下文视频处理能力、结构化的视频知识索引以及多模态检索能力,使其能够为复杂查询提供全面的回答。该框架在长视频理解领域具有重要的技术价值和应用前景。
Data Commons 是一个由 Google 发起的公共数据整合与分析平台,致力于简化全球公共数据的探索过程。
Data Commons 是一个强大的公共数据平台,旨在通过整合全球公共数据,提供统一的知识图谱,帮助用户轻松探索和分析数据。它由 Google 发起,支持多种数据源的整合,并提供丰富的可视化工具和 API 接口,方便用户进行数据探索和研究。Data Commons 的主要优点是数据的标准化和统一化,用户可以通过其强大的工具快速获取和分析数据,无需复杂的预处理。此外,它还支持社区贡献,用户可以分享自己的分析和见解,共同推动数据科学的发展。Data Commons 适用于研究人员、数据分析师、政策制定者以及任何需要公共数据支持决策的群体,其免费的访问模式降低了数据使用的门槛,促进了数据的广泛传播和应用。
一个由LLM驱动的数据处理系统。
DocETL是一个强大的系统,用于处理和分析大量文本数据。它通过利用大型语言模型(LLM)的能力,能够自动优化数据处理流程,并将LLM与非LLM操作无缝集成。该系统的主要优点包括其声明式的YAML定义方式,使得用户可以轻松地定义复杂的数据处理流程。此外,DocETL还提供了一个交互式的playground,方便用户进行提示工程的实验。产品背景信息显示,DocETL在2024年12月推出了DocWrangler,这是一个新的交互式playground,旨在简化提示工程。价格方面,虽然没有明确标出,但从提供的使用案例来看,运行和优化数据处理流程的成本相对较低。产品定位主要是为需要处理大量文本数据并从中提取有价值信息的用户提供服务。
为代码库定制的AI代理,帮助开发者进行调试、测试和系统设计等任务。
Potpie是一个面向开发者的技术平台,通过构建基于代码库的AI代理来帮助开发者进行调试、测试、系统设计、代码审查和文档生成等任务。该产品利用强大的知识图谱技术,使AI代理能够深入理解代码库的上下文,从而提供高精度的工程任务执行能力。Potpie的主要优点在于其高度定制化和易于集成的特点,能够显著提高开发效率和代码质量。产品提供免费试用,并且有开源版本可供选择。
Agentic Graph Language Assistant
GraphAgent是一个自动化代理流水线,旨在处理显式的图形依赖和隐式的图形增强语义相互依赖,以适应实际数据场景中的预测任务(例如节点分类)和生成任务(例如文本生成)。它由三个关键组件构成:构建知识图谱以反映复杂语义依赖的图形生成代理;解释不同用户查询并制定相应任务的计划代理;以及高效执行计划任务并自动化工具匹配和调用的执行代理。GraphAgent通过集成语言模型和图形语言模型来揭示复杂的关系信息和数据语义依赖。
知识增强型故事角色定制的统一世界模型
StoryWeaver是一个为知识增强型故事角色定制而设计的统一世界模型,旨在实现单一和多角色故事可视化。该模型基于AAAI 2025论文,能够通过统一的框架处理故事中角色的定制和可视化,这对于自然语言处理和人工智能领域具有重要意义。StoryWeaver的主要优点包括其能够处理复杂故事情境的能力,以及能够持续更新和扩展其功能。产品背景信息显示,该模型将不断更新arXiv论文,并添加更多实验结果。
深度理解代码库的人工智能助手
Depth AI 是一款由工程师构建的人工智能产品,它通过构建代码库的知识图谱,能够回答深度技术问题,并支持在不同工作场景中部署定制化的AI助手。产品背景信息显示,Depth AI 旨在帮助工程师和开发团队更高效地理解和使用代码库,通过集成到现有的工具和工作流程中,如Slack、GitHub Copilot、Jira等,提高团队的生产力。产品的主要优点包括深度技术问题解答、全面的代码图谱理解、抽象推理能力以及潜在空间交互等。Depth AI 提供企业级的安全和合规特性,确保数据安全,并且不会使用客户数据进行模型训练。
开源知识图谱工作室,助力构建动态图谱AI工作流
WhyHow Knowledge Graph Studio是一个开源平台,旨在简化创建和管理RAG-native知识图谱的过程。该平台提供基于规则的实体解析、模块化图构建、灵活的数据摄取以及API优先设计,并支持SDK。它基于NoSQL数据库构建,提供灵活、可扩展的存储层,使复杂关系的数据检索和遍历变得容易。该平台适用于处理结构化和非结构化数据,构建探索性图谱或高度模式化约束图谱,旨在实现规模化和灵活性,适用于实验和大规模使用。
利用压缩比快速检测AI生成文本的工具
ZipPy是一个研究性质的快速AI检测工具,它使用压缩比来间接测量文本的困惑度。ZipPy通过比较AI生成的语料库与提供的样本之间的相似性来进行分类。该工具的主要优点是速度快、可扩展性强,并且可以嵌入到其他系统中。ZipPy的背景信息显示,它是作为对现有大型语言模型检测系统的补充,这些系统通常使用大型模型来计算每个词的概率,而ZipPy提供了一种更快的近似方法。
AI模型上构建的AI应用和网站平台
Agentplace是一个无需编码知识即可在AI模型上构建AI应用和网站平台。它利用AI的适应性、常识、知识和语音能力,允许用户完全通过文本编程。产品的主要优点包括动态用户界面、语音模式、常识理解和即时发布。Agentplace的背景信息显示,它旨在通过AI技术简化网站和应用的创建过程,使非技术用户也能轻松构建交互式和动态的网站。价格方面,Agentplace提供免费和付费两种定价计划,以满足不同用户的需求。
多模态嵌入模型,实现文本、图像和截图的无缝检索。
Voyage AI推出的voyage-multimodal-3是一款多模态嵌入模型,它能够将文本和图像(包括PDF、幻灯片、表格等的截图)进行向量化处理,并捕捉关键视觉特征,从而提高文档检索的准确性。这一技术的进步,对于知识库中包含视觉和文本的丰富信息的RAG和语义搜索具有重要意义。voyage-multimodal-3在多模态检索任务中平均提高了19.63%的检索准确率,相较于其他模型表现出色。
从文本中提取知识图谱三元组的管道工具
Graphusion是一个用于从文本中提取知识图谱三元组的管道工具。它通过一系列步骤,包括概念提取、候选三元组提取和三元组融合,来构建知识图谱。这个工具的重要性在于它能够帮助研究人员和开发者自动化地从大量文本数据中提取结构化信息,进而支持知识管理和数据科学项目。Graphusion的主要优点包括其自动化处理能力、对不同数据集的适应性以及灵活的配置选项。产品背景信息显示,Graphusion是由tdurieux开发的,可以在GitHub上找到相关代码和文档。目前,该工具是免费的,但具体的定价策略可能会根据开发者的更新和维护情况而变化。
语鲸,智能语言处理平台
语鲸是一个专注于语言处理的平台,它利用先进的自然语言处理技术,为用户提供文本分析、翻译、校对等服务。产品背景信息显示,语鲸旨在帮助用户提高写作效率和质量,特别是在多语言环境中。语鲸的价格定位尚未明确,但考虑到其提供的服务,可能会有免费试用和付费版本。
基于知识增强的生成框架,用于构建专业的知识服务
KAG(Knowledge Augmented Generation)是一个专业的领域知识服务框架,旨在通过知识图谱和向量检索的优势,双向增强大型语言模型和知识图谱,解决RAG(Retrieval Augmentation Generation)技术在向量相似性与知识推理相关性之间的大差距、对知识逻辑不敏感等问题。KAG在多跳问答任务上的表现显著优于NaiveRAG、HippoRAG等方法,例如在hotpotQA上的F1分数相对提高了19.6%,在2wiki上提高了33.5%。KAG已成功应用于蚂蚁集团的两个专业知识问答任务中,包括政务问答和健康问答,与RAG方法相比,专业性得到了显著提升。
多模态AI平台,整合文本、图像和音频交互
GPT-4o是OpenAI推出的先进多模态AI平台,它在GPT-4的基础上进一步扩展,实现了真正的多模态方法,涵盖文本、图像和音频。GPT-4o设计上更快、更低成本、更普及,彻底革新我们与AI互动的方式。它提供了流畅且直观的AI交互体验,无论是参与自然对话、解读复杂文本,还是识别语音中的微妙情感,GPT-4o的适应能力都是无与伦比的。
AI模型令牌计数和成本估算工具
Token Counter是一个在线工具,用于计算文本中的令牌数量并估算使用AI模型的成本。它支持多种AI模型,如OpenAI和Anthropic,并提供了实时的令牌计数和成本估算。该工具对于管理API成本、估计处理时间以及确保输入不超过模型限制至关重要。Token Counter的主要优点包括高准确性、多语言支持、实时计数以及易于使用的界面。它适用于需要处理大量文本数据的开发者和企业,帮助他们更有效地管理和优化AI模型的使用。
开源工具,简化从非结构化文档中提取和探索结构化数据。
Knowledge Table 是一个开源工具包,旨在简化从非结构化文档中提取和探索结构化数据的过程。它通过自然语言查询界面,使用户能够创建结构化的知识表示,如表格和图表。该工具包具有可定制的提取规则、精细调整的格式化选项,并通过UI显示的数据溯源,适应多种用例。它的目标是为业务用户提供熟悉的电子表格界面,同时为开发者提供灵活且高度可配置的后端,确保与现有RAG工作流程的无缝集成。
海量文本数据提取与分析
TxT360 是一个由 LLM360 提供的 Hugging Face 空间产品,专注于从海量文本数据中提取有价值的信息。它利用先进的自然语言处理技术,能够高效地处理大规模文本数据,为用户提供深度分析和洞察。这一技术对于需要处理大量文本信息的企业和研究人员来说至关重要,因为它可以节省大量时间和资源,同时提供更准确的数据分析结果。
检测文本是否由AI生成
AI Detect是一个先进的AI检测工具,能够分析文本并判断其是否由AI生成。它使用最新的AI技术,提供了高达99%的准确率来预测文本是否来自ChatGPT、Google Gemini、Claude Opus、Meta LLaMa等AI模型。AI Detect不仅能够检测AI写作,还能帮助用户将AI生成的文本进行'人性化'处理,使其难以被检测出来。它适用于需要验证文本真实性和原创性的个人和企业,例如教育机构、内容创作者和出版社等。
基于图的科学发现与知识提取
GraphReasoning是一个利用生成式人工智能技术将1000篇科学论文转化为知识图谱的项目。通过结构化分析,计算节点度、识别社区和连接性,评估聚类系数和关键节点的介数中心性,揭示了迷人的知识架构。该图谱具有无标度性质,高度互联,可用于图推理,利用传递性和同构性质揭示前所未有的跨学科关系,用于回答问题、识别知识空白、提出前所未有的材料设计和预测材料行为。
利用本地Llama模型构建知识图谱,探索相关问题和答案。
Local Knowledge Graph是一个基于Flask的Web应用程序,它使用本地Llama语言模型来处理用户查询,生成逐步推理,并以交互式知识图谱的形式可视化思考过程。它还能根据语义相似性找到并显示相关问题和答案。该应用程序的主要优点包括实时显示推理过程、动态知识图谱可视化、计算并显示最强推理路径、以及基于语义相似性的相关问答。
© 2025 AIbase 备案号:闽ICP备08105208号-14