需求人群:
"该产品适用于需要高效知识检索和生成的开发人员、研究人员以及企业级应用开发者。它能够帮助用户在大规模文档中快速检索相关信息,并生成高质量的答案,适用于问答系统、智能客服、知识管理等场景。"
使用场景示例:
在问答系统中,KET-RAG 可以快速检索知识库并生成准确的答案。
用于智能客服场景,KET-RAG 能够根据用户问题检索相关知识并生成回复。
在知识管理系统中,KET-RAG 可以帮助用户快速定位和生成知识片段。
产品特色:
支持知识图谱骨架(SkeletonRAG)以选择关键文本片段并提取结构化知识。
通过文本-关键词二分图(KeywordRAG)高效链接关键词与文本片段。
结合实体和关键词通道实现高效的检索和高质量的生成。
支持通过 Poetry 安装依赖,便于环境配置和管理。
提供灵活的索引构建和上下文生成工具,适用于多种应用场景。
使用教程:
1. 安装依赖:使用 Poetry 安装项目依赖。
2. 初始化项目:运行初始化命令设置项目文件结构。
3. 调整提示词:通过 prompt-tune 命令调整提示词以优化检索效果。
4. 构建索引:运行索引命令创建知识图谱和文本索引。
5. 生成上下文和答案:使用 create_context.py 和 llm_answer.py 脚本生成上下文和答案。
浏览量:26
最新流量情况
月访问量
5.03m
平均访问时长
00:06:29
每次访问页数
5.88
跳出率
37.10%
流量来源
直接访问
52.07%
自然搜索
32.84%
邮件
0.04%
外链引荐
12.88%
社交媒体
2.04%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.85%
德国
3.90%
印度
9.41%
俄罗斯
4.16%
美国
18.95%
KET-RAG 是一个结合知识图谱的检索增强型生成框架,用于高效文档索引和答案生成。
KET-RAG(Knowledge-Enhanced Text Retrieval Augmented Generation)是一个强大的检索增强型生成框架,结合了知识图谱技术。它通过多粒度索引框架(如知识图谱骨架和文本-关键词二分图)实现高效的知识检索和生成。该框架在降低索引成本的同时,显著提升了检索和生成质量,适用于大规模 RAG 应用场景。KET-RAG 基于 Python 开发,支持灵活的配置和扩展,适用于需要高效知识检索和生成的开发人员和研究人员。
利用大型语言模型增量构建知识图谱
iText2KG是一个Python包,旨在利用大型语言模型从文本文档中提取实体和关系,增量构建一致的知识图谱。它具备零样本能力,允许在没有特定训练的情况下跨不同领域进行知识提取。该包包括文档蒸馏、实体提取和关系提取模块,确保实体和关系得到解决和唯一性。它通过Neo4j提供知识图谱的可视化表示,支持交互式探索和分析结构化数据。
知识增强型故事角色定制的统一世界模型
StoryWeaver是一个为知识增强型故事角色定制而设计的统一世界模型,旨在实现单一和多角色故事可视化。该模型基于AAAI 2025论文,能够通过统一的框架处理故事中角色的定制和可视化,这对于自然语言处理和人工智能领域具有重要意义。StoryWeaver的主要优点包括其能够处理复杂故事情境的能力,以及能够持续更新和扩展其功能。产品背景信息显示,该模型将不断更新arXiv论文,并添加更多实验结果。
AI驱动的数据可视化工具
Data Formulator 是微软研究团队开发的一款AI驱动的数据可视化工具,它通过结合用户界面交互和自然语言输入,帮助用户快速创建丰富的数据可视化图表。该工具可以自动处理数据转换,使用户能够专注于图表设计。Data Formulator 支持通过Python安装并本地运行,也可以在GitHub Codespaces中快速启动。它代表了数据分析和可视化领域的技术进步,通过AI技术提高了数据可视化的效率和易用性。
开源工具,简化从非结构化文档中提取和探索结构化数据。
Knowledge Table 是一个开源工具包,旨在简化从非结构化文档中提取和探索结构化数据的过程。它通过自然语言查询界面,使用户能够创建结构化的知识表示,如表格和图表。该工具包具有可定制的提取规则、精细调整的格式化选项,并通过UI显示的数据溯源,适应多种用例。它的目标是为业务用户提供熟悉的电子表格界面,同时为开发者提供灵活且高度可配置的后端,确保与现有RAG工作流程的无缝集成。
简单快速的检索增强型生成模型
LightRAG是一个基于检索增强型生成模型,旨在通过结合检索和生成的优势来提升文本生成任务的性能。该模型在保持生成速度的同时,能够提供更准确和相关的信息,这对于需要快速且准确信息检索的应用场景尤为重要。LightRAG的开发背景是基于对现有文本生成模型的改进需求,特别是在需要处理大量数据和复杂查询时。该模型目前是开源的,可以免费使用,对于研究人员和开发者来说,它提供了一个强大的工具来探索和实现基于检索的文本生成任务。
与文档进行自然语言对话的Python应用
Chat With Your Docs 是一个Python应用程序,允许用户与多种文档格式(如PDF、网页和YouTube视频)进行对话。用户可以使用自然语言提问,应用程序将基于文档内容提供相关回答。该应用利用语言模型生成准确答案。请注意,应用仅回应与加载的文档相关的问题。
基于知识图谱的智能问答系统。
Fact Finder 是一个开源的智能问答系统,它使用语言模型和知识图谱来生成自然语言回答和提供证据。该系统通过调用语言模型生成Cypher查询,查询知识图谱以获取答案,并使用另一个语言模型调用生成最终的自然语言回答。Fact Finder 的主要优点包括能够提供透明性,允许用户查看查询和证据,以及通过可视化子图提供直观的证据。
AI驱动的数据分析工具
Datalore是一个集成了Anthropic的Claude API和多种数据分析库的AI驱动的数据分析工具。它提供了一个交互式界面,使用户能够使用自然语言命令执行数据分析任务。
利用知识图谱和文档网络增强语言模型性能
Knowledge Graph RAG 是一个开源的Python库,它通过创建知识图谱和文档网络来增强大型语言模型(LLM)的性能。这个库允许用户通过图谱结构来搜索和关联信息,从而为语言模型提供更丰富的上下文。它主要应用于自然语言处理领域,尤其是在文档检索和信息抽取任务中。
一个实验性的UI,用于将文本转换为知识图谱。
prettygraph是一个基于Python的Web应用程序,由@yoheinakajima开发,展示了一种新的UI模式,用于将文本输入动态地转换为知识图谱。该项目是一个快速原型,旨在提供一种简单的UI想法,通过实时更新UI中的文本高亮来生成知识图谱。
结合文本提取、网络分析和大型语言模型提示与总结的端到端系统
GraphRAG (Graphs + Retrieval Augmented Generation) 是一种通过结合文本提取、网络分析以及大型语言模型(LLM)的提示和总结,来丰富理解文本数据集的技术。该技术即将在GitHub上开源,是微软研究项目的一部分,旨在通过先进的算法提升文本数据的处理和分析能力。
基于人工智能生成及查询不断扩展的知识图谱的概念证明
MindGraph是一个开源、API优先的基于图形的项目原型,旨在实现自然语言交互(输入和输出)。它可作为构建和定制自己的CRM解决方案的模板,重点是易于集成和可扩展性。主要功能包括:实体管理、集成触发器、搜索功能、人工智能整备。它采用模块化架构,通过集成管理器动态注册和执行各种集成函数,使其具有无缝集成人工智能功能的能力。它支持灵活的数据库集成,包括内存数据库和云数据库NexusDB。再加上基于模式的知识图谱创建,使其能够自动从自然语言输入中生成结构化数据。
基于知识图谱的检索增强生成框架,赋能大型语言模型处理知识密集型任务
KG-RAG是一个任务无关的框架,它结合知识图谱的显性知识和大型语言模型的隐性知识。这里,我们利用一个巨大的生物医学知识图谱SPOKE作为生物医学上下文的提供者。KG-RAG的主要特征是它从SPOKE知识图谱中提取“与提示相关的上下文”,这被定义为响应用户提示所需的最小上下文。
Python自然语言处理工具包
NLTK是一个领先的Python平台,用于处理人类语言数据。它提供了易于使用的接口,用于访问50多个语料库和词汇资源,如WordNet,并提供了一套文本处理库,用于分类、标记、解析和语义推理。它还提供了工业级NLP库的封装,并有一个活跃的讨论论坛。NLTK适用于语言学家、工程师、学生、教育者、研究人员和行业用户。NLTK可以免费使用,并且是一个开源的社区驱动项目。
Docker推出的人工智能应用开发解决方案
Docker GenAI Stack是一个面向开发者的人工智能应用开发解决方案。它整合了各大领先的AI技术,只需几次点击就可以部署完整的AI应用栈,实现代码级的AI集成。GenAI Stack内置预配置的大型语言模型,提供Ollama管理,采用Neo4j作为默认数据库,可实现知识图谱和向量搜索。还配备了LangChain框架用于编排和调试,以及全面的技术支持和社区资源。GenAI Stack使AI应用开发变得简单高效,开发者可以快速构建实用的AI解决方案。
在Kie.ai上集成DeepSeek R1和V3 API,提供安全且可扩展的AI解决方案。
DeepSeek R1与V3 API是Kie.ai提供的强大AI模型接口。DeepSeek R1是专为数学、编程和逻辑推理等高级推理任务设计的最新推理模型,经过大规模强化学习训练,能够提供精准结果。DeepSeek V3则适用于处理常规AI任务。这些API部署在美国安全服务器上,保障数据安全与隐私。Kie.ai还提供详细的API文档和多种定价方案,满足不同需求,助力开发者快速集成AI能力,提升项目性能。
一个用于比较大型语言模型在总结短文档时产生幻觉的排行榜。
该产品是一个由Vectara开发的开源项目,用于评估大型语言模型(LLM)在总结短文档时的幻觉产生率。它使用了Vectara的Hughes幻觉评估模型(HHEM-2.1),通过检测模型输出中的幻觉来计算排名。该工具对于研究和开发更可靠的LLM具有重要意义,能够帮助开发者了解和改进模型的准确性。
一个用于创建基于LangGraph的分层多智能体系统的Python库。
LangGraph Multi-Agent Supervisor是一个基于LangGraph框架构建的Python库,用于创建分层多智能体系统。它允许开发者通过一个中心化的监督智能体来协调多个专业智能体,实现任务的动态分配和通信管理。该技术的重要性在于其能够高效地组织复杂的多智能体任务,提升系统的灵活性和可扩展性。它适用于需要多智能体协作的场景,如自动化任务处理、复杂问题解决等。该产品定位为高级开发者和企业级应用,目前未明确公开价格,但其开源特性使得用户可以根据自身需求进行定制和扩展。
Proxy 是一个全自动化的 AI 助手,用于完成日常任务。
Proxy 是 Convergence.ai 推出的 AI 助手,旨在通过自然语言交互帮助用户完成各种日常任务。它利用先进的 AI 技术,能够理解用户的指令并执行任务,如安排日程、总结文章、查找信息等。该产品的主要优点是高效、便捷,能够节省用户的时间和精力。它适合忙碌的专业人士、研究人员、开发者等,帮助他们自动化重复性任务。Proxy 提供免费试用版本,用户可以体验其功能,同时也有付费高级版本供选择。
检测设备是否能运行不同规模的 DeepSeek 模型,提供兼容性预测。
DeepSeek 模型兼容性检测是一个用于评估设备是否能够运行不同规模 DeepSeek 模型的工具。它通过检测设备的系统内存、显存等配置,结合模型的参数量、精度位数等信息,为用户提供模型运行的预测结果。该工具对于开发者和研究人员在选择合适的硬件资源以部署 DeepSeek 模型时具有重要意义,能够帮助他们提前了解设备的兼容性,避免因硬件不足而导致的运行问题。DeepSeek 模型本身是一种先进的深度学习模型,广泛应用于自然语言处理等领域,具有高效、准确的特点。通过该检测工具,用户可以更好地利用 DeepSeek 模型进行项目开发和研究。
大规模深度循环语言模型的预训练代码,支持在4096个AMD GPU上运行。
该产品是一个用于大规模深度循环语言模型的预训练代码库,基于Python开发。它在AMD GPU架构上进行了优化,能够在4096个AMD GPU上高效运行。该技术的核心优势在于其深度循环架构,能够有效提升模型的推理能力和效率。它主要用于研究和开发高性能的自然语言处理模型,特别是在需要大规模计算资源的场景中。该代码库开源且基于Apache-2.0许可证,适合学术研究和工业应用。
与您的应用程序进行自然语言交互,提升工作效率和便捷性。
Concierge AI 是一款通过自然语言与应用程序交互的产品,它利用先进的自然语言处理技术,让用户能够以更直观、更便捷的方式与各种应用程序进行沟通和操作。这种技术的重要性在于它能够打破传统界面操作的限制,让用户以更自然表达的方式需求,从而提高工作效率和用户体验。产品目前处于推广阶段,具体价格和详细定位尚未明确,但其目标是为用户提供一种全新的交互方式,以满足现代工作环境中对效率和便捷性的高要求。
Zyphra是一家专注于人工智能技术的公司,提供聊天模型和相关服务。
Zyphra通过其开发的人工智能聊天模型Maia,为用户提供高效、智能的聊天体验。该技术基于先进的自然语言处理算法,能够理解并生成自然流畅的对话内容。其主要优点包括高效率的交互、个性化服务以及强大的语言理解能力。Zyphra的目标是通过智能聊天技术改善人机交互体验,推动AI在日常生活中的应用。目前,Zyphra提供免费试用服务,具体定价策略尚未明确。
VideoRAG 是一个用于处理极长上下文视频的检索增强型生成框架。
VideoRAG 是一种创新的检索增强型生成框架,专门用于理解和处理极长上下文视频。它通过结合图驱动的文本知识锚定和层次化多模态上下文编码,实现了对无限制长度视频的理解。该框架能够动态构建知识图谱,保持多视频上下文的语义连贯性,并通过自适应多模态融合机制优化检索效率。VideoRAG 的主要优点包括高效的极长上下文视频处理能力、结构化的视频知识索引以及多模态检索能力,使其能够为复杂查询提供全面的回答。该框架在长视频理解领域具有重要的技术价值和应用前景。
AI原生的商业智能平台,通过自然语言生成数据可视化和仪表板
Basedash是一个AI原生的商业智能平台,它通过自然语言处理技术,帮助用户快速生成数据可视化图表和仪表板。该平台无需用户编写SQL代码,即可从550多个数据源中提取数据,并生成直观的图表。Basedash的主要优点是其强大的AI驱动功能,能够理解用户的自然语言需求,自动调整和优化数据查询。它适用于各种规模的企业,帮助他们快速获取业务洞察。目前,Basedash处于Beta阶段,用户可以免费试用。
RAG-FiT是一个用于提升LLMs利用外部信息能力的库,通过特别创建的RAG增强数据集对模型进行微调。
RAG-FiT是一个强大的工具,旨在通过检索增强生成(RAG)技术提升大型语言模型(LLMs)的能力。它通过创建专门的RAG增强数据集,帮助模型更好地利用外部信息。该库支持从数据准备到模型训练、推理和评估的全流程操作。其主要优点包括模块化设计、可定制化工作流以及对多种RAG配置的支持。RAG-FiT基于开源许可,适合研究人员和开发者进行快速原型开发和实验。
s1是一个基于Qwen2.5-32B-Instruct微调的推理模型,仅用1000个样本进行训练。
s1是一个推理模型,专注于通过少量样本实现高效的文本生成能力。它通过预算强制技术在测试时进行扩展,能够匹配o1-preview的性能。该模型由Niklas Muennighoff等人开发,相关研究发表在arXiv上。模型使用Safetensors技术,具有328亿参数,支持文本生成任务。其主要优点是能够通过少量样本实现高质量的推理,适合需要高效文本生成的场景。
© 2025 AIbase 备案号:闽ICP备08105208号-14