需求人群:
"该工具包适合开发者和研究人员,他们需要在编程和语言处理领域中使用先进的语言模型技术。通过集成的模型和工具,用户可以更高效地进行语言生成、检索和处理任务。"
使用场景示例:
开发者可以使用该工具包在 ComfyUI 平台上创建自定义的语言处理节点。
研究人员可以利用 Llama-Index 进行高效的语言模型检索,提升研究效率。
教育机构可以利用该工具包进行语言模型的教学和演示。
产品特色:
集成了检索增强生成(RAG)工具 Llama-Index,提供高效的语言模型检索能力。
集成了微软的 AutoGen 和 LlaVA-Next,增强了语言生成和处理能力。
通过 ComfyUI 的可适应节点接口,提升了平台的灵活性和扩展性。
支持创建可对话的代理,提供了丰富的交互体验。
支持使用 Groq LLM 模型进行搜索,展示了 Tavily 研究节点的功能。
支持使用 Scale SERP 进行搜索,并展示了如何使用不同模型进行相同设置。
支持将搜索结果转换为 JSON 输出,方便与其他系统集成。
使用教程:
1. 设置虚拟环境(如有必要)。
2. 导航到 ComfyUI/custom_nodes。
3. 克隆仓库:git clone https://github.com/get-salt-AI/SaltAI_LlamaIndex。
4. 切换到克隆的目录:cd SaltAI_Llama-index。
5. 安装依赖项:使用 Python venv 或 ComfyUI Portable 安装 pip 依赖。
6. 安装 ComfyUI-Manager,并在 ComfyUI 中搜索并安装节点包 'SaltAI_LlamaIndex'。
7. 重启服务器并刷新浏览器。
浏览量:50
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
用于角色扮演、检索增强生成和功能调用的小型语言模型
Nemotron-Mini-4B-Instruct 是 NVIDIA 开发的一款小型语言模型,通过蒸馏、剪枝和量化优化,以提高速度和便于在设备上部署。它是从 Nemotron-4 15B 通过 NVIDIA 的大型语言模型压缩技术剪枝和蒸馏得到的 nvidia/Minitron-4B-Base 的微调版本。此指令模型针对角色扮演、检索增强问答(RAG QA)和功能调用进行了优化,支持 4096 个令牌的上下文长度,已准备好用于商业用途。
增强型语言工具包
SaltAI Language Toolkit 是一个集成了检索增强生成(RAG)工具 Llama-Index、微软的 AutoGen 和 LlaVA-Next 的项目,通过 ComfyUI 的可适应节点接口,增强了平台的功能和用户体验。该项目于2024年5月9日增加了代理功能。
一个简单的检索增强生成框架,使小型模型通过异构图索引和轻量级拓扑增强检索实现良好的RAG性能。
MiniRAG是一个针对小型语言模型设计的检索增强生成系统,旨在简化RAG流程并提高效率。它通过语义感知的异构图索引机制和轻量级的拓扑增强检索方法,解决了小型模型在传统RAG框架中性能受限的问题。该模型在资源受限的场景下具有显著优势,如在移动设备或边缘计算环境中。MiniRAG的开源特性也使其易于被开发者社区接受和改进。
ViDoRAG 是一个结合视觉文档检索增强生成的动态迭代推理代理框架。
ViDoRAG 是阿里巴巴自然语言处理团队开发的一种新型多模态检索增强生成框架,专为处理视觉丰富文档的复杂推理任务设计。该框架通过动态迭代推理代理和高斯混合模型(GMM)驱动的多模态检索策略,显著提高了生成模型的鲁棒性和准确性。ViDoRAG 的主要优点包括高效处理视觉和文本信息、支持多跳推理以及可扩展性强。该框架适用于需要从大规模文档中检索和生成信息的场景,例如智能问答、文档分析和内容创作。其开源特性和灵活的模块化设计使其成为研究人员和开发者在多模态生成领域的重要工具。
用于多模态上下文中的检索增强生成的基准测试代码库。
M2RAG是一个用于多模态上下文中的检索增强生成的基准测试代码库。它通过多模态检索文档来回答问题,评估多模态大语言模型(MLLMs)在利用多模态上下文知识方面的能力。该模型在图像描述、多模态问答、事实验证和图像重排等任务上进行了评估,旨在提升模型在多模态上下文学习中的有效性。M2RAG为研究人员提供了一个标准化的测试平台,有助于推动多模态语言模型的发展。
提供检索增强生成的API,提高检索能力,针对无法回答的用户问题和混乱的用户输入
Superpowered.ai通过自主研发的技术组件SuperStack,解决了标准RAG流水线在实际使用中出现的许多失败情况。SuperStack包含AutoQuery、相关段落提取和自动上下文注入等技术,可以转换易混淆或表述不当的用户输入为良构的搜索查询,动态检索相关信息,确保语言模型充分理解每段文本的含义。通过Chat端点快速部署会话式AI应用;提供UI组件加速应用开发。可广泛应用于客户支持助理、员工生产力工具、教育应用、法律援助工具等场景。
基于视觉语言模型的检索增强型生成模型
VisRAG是一个创新的视觉语言模型(VLM)基础的RAG(Retrieval-Augmented Generation)流程。与传统的基于文本的RAG不同,VisRAG直接将文档作为图像通过VLM进行嵌入,然后检索以增强VLM的生成能力。这种方法最大限度地保留了原始文档中的数据信息,并消除了解析过程中引入的信息损失。VisRAG模型在多模态文档上的应用,展示了其在信息检索和增强文本生成方面的强大潜力。
长文本问答增强型检索生成模型
LongRAG是一个基于大型语言模型(LLM)的双视角、鲁棒的检索增强型生成系统范式,旨在增强对复杂长文本知识的理解和检索能力。该模型特别适用于长文本问答(LCQA),能够处理全局信息和事实细节。产品背景信息显示,LongRAG通过结合检索和生成技术,提升了对长文本问答任务的性能,特别是在需要多跳推理的场景中。该模型是开源的,可以免费使用,主要面向研究者和开发者。
简单快速的检索增强型生成模型
LightRAG是一个基于检索增强型生成模型,旨在通过结合检索和生成的优势来提升文本生成任务的性能。该模型在保持生成速度的同时,能够提供更准确和相关的信息,这对于需要快速且准确信息检索的应用场景尤为重要。LightRAG的开发背景是基于对现有文本生成模型的改进需求,特别是在需要处理大量数据和复杂查询时。该模型目前是开源的,可以免费使用,对于研究人员和开发者来说,它提供了一个强大的工具来探索和实现基于检索的文本生成任务。
科学文献合成的检索增强型语言模型
OpenScholar是一个检索增强型语言模型(LM),旨在通过首先搜索文献中的相关论文,然后基于这些来源生成回答,来帮助科学家有效地导航和综合科学文献。该模型对于处理每年发表的数百万篇科学论文,以及帮助科学家找到他们需要的信息或跟上单一子领域最新发现具有重要意义。
Command-R是针对大型生产工作负载的新LLM,专为RAG(检索增强生成)和工具使用优化,以实现企业级的生产规模AI
Command-R是一个可扩展的生成型模型,旨在平衡高效率和强大的准确性,使企业能够超越概念验证阶段,进入生产阶段。它专为长内容任务设计,如使用外部API和工具的检索增强生成。Command-R与Cohere的Embed和Rerank模型协同工作,为RAG应用提供一流的集成,并在企业用例中表现出色。
7B参数的多语言文本生成模型
CohereForAI/c4ai-command-r7b-12-2024是一个7B参数的多语言模型,专注于推理、总结、问答和代码生成等高级任务。该模型支持检索增强生成(RAG)和工具使用,能够使用和组合多个工具来完成更复杂的任务。它在企业相关的代码用例上表现优异,支持23种语言。
科学文献综合检索增强型语言模型
Ai2 OpenScholar是由艾伦人工智能研究所与华盛顿大学合作开发的检索增强型语言模型,旨在帮助科学家通过检索相关文献并基于这些文献生成回答来有效导航和综合科学文献。该模型在多个科学领域中表现出色,特别是在引用准确性和事实性方面。它代表了人工智能在科学研究中应用的重要进步,能够加速科学发现并提高研究效率。
构建基于检索增强生成(RAG)和代理的生成式AI应用的先进语言模型
Amazon Titan Text Premier 是 Amazon Titan 系列模型中的新成员,专为文本基础的企业级应用设计,支持定制化微调以适应特定领域、组织、品牌风格和用例。该模型在 Amazon Bedrock 中提供,具备32K令牌的最大上下文长度,特别适合英文任务,并整合了负责任的人工智能实践。
视觉语言模型高效文档检索工具
ColPali 是一种基于视觉语言模型的高效文档检索工具,它通过直接嵌入文档页面图像的方式来简化文档检索流程。ColPali 利用了最新的视觉语言模型技术,特别是 PaliGemma 模型,通过晚交互机制实现多向量检索,从而提高检索性能。这一技术不仅加快了索引速度,降低了查询延迟,而且在检索包含视觉元素的文档方面表现出色,例如图表、表格和图像。ColPali 的出现,为文档检索领域带来了一种新的“视觉空间检索”范式,有助于提高信息检索的效率和准确性。
革命性的检索增强生成系统技术集合。
RAG_Techniques 是一个专注于检索增强生成(Retrieval-Augmented Generation, RAG)系统的技术集合,旨在提升系统的准确性、效率和上下文丰富性。它提供了一个前沿技术的中心,通过社区贡献和协作环境,推动RAG技术的发展和创新。
开源的基于深度文档理解的RAG(检索增强生成)引擎
RAGFlow是一个开源的RAG(Retrieval-Augmented Generation)引擎,基于深度文档理解,提供流线型的RAG工作流程,适用于各种规模的企业。它结合了大型语言模型(LLM)提供真实的问答能力,支持从各种复杂格式数据中引用确凿的引文。
多语言嵌入模型,用于视觉文档检索。
vdr-2b-multi-v1 是一款由 Hugging Face 推出的多语言嵌入模型,专为视觉文档检索设计。该模型能够将文档页面截图编码为密集的单向量表示,无需 OCR 或数据提取流程即可搜索和查询多语言视觉丰富的文档。基于 MrLight/dse-qwen2-2b-mrl-v1 开发,使用自建的多语言查询 - 图像对数据集进行训练,是 mcdse-2b-v1 的升级版,性能更强大。模型支持意大利语、西班牙语、英语、法语和德语,拥有 50 万高质量样本的开源多语言合成训练数据集,具有低 VRAM 和快速推理的特点,在跨语言检索方面表现出色。
35亿参数的高性能生成模型
C4AI Command R 08-2024是由Cohere和Cohere For AI开发的35亿参数大型语言模型,专为推理、总结和问答等多种用例优化。该模型支持23种语言的训练,并在10种语言中进行了评估,具有高性能的RAG(检索增强生成)能力。它通过监督式微调和偏好训练,以符合人类对有用性和安全性的偏好。此外,该模型还具备对话工具使用能力,能够通过特定的提示模板生成基于工具的响应。
知识增强大语言模型
文心一言是百度全新一代知识增强大语言模型,能够与人对话互动,回答问题,协助创作,高效便捷地帮助人们获取信息、知识和灵感。基于飞桨深度学习平台和文心知识增强大模型,持续从海量数据和大规模知识中融合学习具备知识增强、检索增强和对话增强的技术特色。期待你的反馈,帮助文心一言持续取得进步。
SkyPilot RAG 是一个基于 SkyPilot 的检索增强生成系统,用于处理大规模法律文档搜索和分析。
SkyPilot RAG 是一个结合了向量搜索和大型语言模型的检索增强生成系统。它通过语义搜索和智能问答,为法律专业人士提供高效的信息检索和分析工具。该系统基于 SkyPilot 构建,能够管理基础设施并高效利用计算资源,支持在任何云环境或 Kubernetes 上部署。其主要优点包括高准确性、上下文感知能力和可追溯性,能够显著提高法律文档处理的效率和可靠性。
基于人类长期记忆的新型RAG框架
HippoRAG是一个启发自人类长期记忆的新型检索增强生成(RAG)框架,它使得大型语言模型(LLMs)能够持续地整合跨外部文档的知识。该框架通过实验表明,HippoRAG能够以更低的计算成本提供通常需要昂贵且高延迟迭代LLM流水线的RAG系统能力。
Stability AI 生成模型是一个开源的生成模型库。
Stability AI 生成模型是一个开源的生成模型库,提供了各种生成模型的训练、推理和应用功能。该库支持各种生成模型的训练,包括基于 PyTorch Lightning 的训练,提供了丰富的配置选项和模块化的设计。用户可以使用该库进行生成模型的训练,并通过提供的模型进行推理和应用。该库还提供了示例训练配置和数据处理的功能,方便用户进行快速上手和定制。
高效的检索增强生成研究工具包
FlashRAG是一个Python工具包,用于检索增强生成(RAG)研究的复现和开发。它包括32个预处理的基准RAG数据集和12种最先进的RAG算法。FlashRAG提供了一个广泛且可定制的框架,包括检索器、重排器、生成器和压缩器等RAG场景所需的基本组件,允许灵活组装复杂流程。此外,FlashRAG还提供了高效的预处理阶段和优化的执行,支持vLLM、FastChat等工具加速LLM推理和向量索引管理。
基于GPT的视频检索和传输代理
StreamRAG是一个开源的视频检索和流媒体代理,使用GPT理解用户的查询意图,并从视频数据库中检索相关视频进行回复。它支持上传和管理视频集合,并通过RESTful API将其发布为ChatGPT技能,以提供语音搜索和响应能力。
面向生成场景的可控大语言模型
孟子生成式大模型(孟子 GPT)是一个面向生成场景的可控大语言模型,能够通过多轮的方式帮助用户完成特定场景中的多种工作任务。它支持知识问答、多语言翻译、通用写作和金融场景任务等功能,具有更可控、更灵活、更个性、更专业的优势。具体定价和使用方式请咨询官方网站。
视觉增强的检索与生成系统
VARAG是一个支持多种检索技术的系统,优化了文本、图像和多模态文档检索的不同用例。它通过将文档页面作为图像嵌入,简化了传统的检索流程,并使用先进的视觉语言模型进行编码,提高了检索的准确性和效率。VARAG的主要优点在于它能够处理复杂的视觉和文本内容,为文档检索提供强大的支持。
一个用于增强LLMs检索增强生成任务的框架
RAGFoundry是一个库,旨在通过在特别创建的RAG增强数据集上微调模型,提高大型语言模型(LLMs)使用外部信息的能力。该库通过参数高效微调(PEFT)帮助用户轻松训练模型,并使用RAG特定指标衡量性能提升。它具有模块化设计,工作流程可通过配置文件自定义。
© 2025 AIbase 备案号:闽ICP备08105208号-14