需求人群:
"目标受众包括电子商务平台、服装零售商、时尚设计师以及图像处理领域的研究人员。TryOffDiff能够帮助他们通过高保真的服装图像重建技术提升产品展示效果,优化客户体验,并在设计和研究中实现更精确的服装图像分析。"
使用场景示例:
电子商务网站使用TryOffDiff展示服装产品,提高在线购物体验。
服装设计师利用TryOffDiff技术进行服装设计的数字化展示。
图像处理研究人员使用TryOffDiff进行高保真服装图像重建的研究和开发。
产品特色:
- 高保真服装图像重建:从单张照片中提取服装的规范图像。
- 细节保留:确保服装的形状、纹理和复杂图案得到准确捕捉。
- 基于扩散模型:使用Stable Diffusion技术进行服装图像生成。
- SigLIP视觉条件:通过视觉条件提高服装重建的准确性。
- 减少预处理和后处理步骤:简化了从原始图像到标准化服装图像的转换过程。
- 提升电子商务产品图像质量:适用于在线零售环境中的产品展示。
- 推进生成模型评估:为评估生成模型的重建保真度提供了新的方法。
- 激发高保真重建研究:为未来在服装图像重建领域的研究提供新的方向。
使用教程:
1. 访问TryOffDiff的官方网站或Demo页面。
2. 上传一张穿着服装的个体照片。
3. 选择TryOffDiff模型进行服装图像重建。
4. 根据需要调整视觉条件参数,以获得最佳的服装图像重建效果。
5. 下载或直接在网站上查看高保真服装重建结果。
6. 将重建的服装图像应用于电子商务产品展示或设计工作中。
7. 根据反馈调整重建参数,以优化服装图像的质量和细节。
浏览量:243
最新流量情况
月访问量
224
平均访问时长
00:00:00
每次访问页数
1.01
跳出率
44.40%
流量来源
直接访问
41.76%
自然搜索
34.53%
邮件
0.19%
外链引荐
12.42%
社交媒体
9.37%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
美国
100.00%
基于扩散模型的高保真服装重建虚拟试穿技术
TryOffDiff是一种基于扩散模型的高保真服装重建技术,用于从穿着个体的单张照片中生成标准化的服装图像。这项技术与传统的虚拟试穿不同,它旨在提取规范的服装图像,这在捕捉服装形状、纹理和复杂图案方面提出了独特的挑战。TryOffDiff通过使用Stable Diffusion和基于SigLIP的视觉条件来确保高保真度和细节保留。该技术在VITON-HD数据集上的实验表明,其方法优于基于姿态转移和虚拟试穿的基线方法,并且需要较少的预处理和后处理步骤。TryOffDiff不仅能够提升电子商务产品图像的质量,还能推进生成模型的评估,并激发未来在高保真重建方面的工作。
无需更换,即可虚拟试穿各种服装。
Kolors 虚拟试穿 AI 是一款利用人工智能技术,通过用户上传的照片来虚拟试穿服装的在线平台。它通过先进的计算机视觉算法和生成对抗网络(GANs)技术,为用户提供逼真的服装试穿效果。该产品不仅改变了传统的试衣体验,还为时尚博主、服装零售商、个人造型师等提供了创新的内容创作和展示方式。它的优势在于能够提供即时的试穿效果,多样化的服装选择,以及真实感的渲染效果,同时保护用户隐私,支持个性化的服装试穿体验。
多件服装虚拟试穿和编辑技术
M&M VTO是一种混合搭配的虚拟试穿方法,它接受多张服装图片、服装布局的文本描述以及一个人的图片作为输入,输出是这些服装在指定布局下穿在给定人物身上的可视化效果。该技术的主要优点包括:单阶段扩散模型,无需超分辨率级联,能够在1024x512分辨率下混合搭配多件服装,同时保留和扭曲复杂的服装细节;架构设计(VTO UNet Diffusion Transformer)能够分离去噪和人物特定特征,实现高效的身份保留微调策略;通过文本输入控制多件服装的布局,专门针对虚拟试穿任务微调。M&M VTO在定性和定量方面都达到了最先进的性能,并为通过语言引导和多件服装试穿开辟了新的可能性。
从文本生成高保真3D服装资产
ClotheDreamer是一个基于3D高斯的文本引导服装生成模型,能够从文本描述生成高保真的、可穿戴的3D服装资产。它采用了一种新颖的表示方法Disentangled Clothe Gaussian Splatting (DCGS),允许服装和人体分别进行优化。该技术通过双向Score Distillation Sampling (SDS)来提高服装和人体渲染的质量,并支持自定义服装模板输入。ClotheDreamer的合成3D服装可以轻松应用于虚拟试穿,并支持物理精确的动画。
虚拟试穿产品图像修复模型
Diffuse to Choose 是一种基于扩散的图像修复模型,主要用于虚拟试穿场景。它能够在修复图像时保留参考物品的细节,并且能够进行准确的语义操作。通过将参考图像的细节特征直接融入主要扩散模型的潜在特征图中,并结合感知损失来进一步保留参考物品的细节,该模型在快速推理和高保真细节方面取得了良好的平衡。
虚拟试穿应用,通过WhatsApp发送图片试穿服装
这是一个使用Flask、Twilio的WhatsApp API和Gradio的虚拟试穿模型构建的虚拟试穿原型应用。用户可以通过WhatsApp发送图片来虚拟试穿服装,并将结果发送回用户。该应用利用了Twilio Sandbox进行WhatsApp消息的发送和接收,以及Gradio API来处理虚拟试穿模型,为用户提供了一个创新的在线购物体验。
高保真图像到视频生成框架
AtomoVideo是一个新颖的高保真图像到视频(I2V)生成框架,它从输入图像生成高保真视频,与现有工作相比,实现了更好的运动强度和一致性,并且无需特定调整即可与各种个性化T2I模型兼容。
高保真、时间连贯的视频编辑
MagicEdit是一款高保真、时间连贯的视频编辑模型,通过明确分离外观和运动的学习,支持视频风格化、局部编辑、视频混合和视频外扩等多种编辑应用。MagicEdit还支持视频外扩任务,无需重新训练即可实现。
一款基于扩散模型的服装试穿技术
TryOnDiffusion是一种创新的图像合成技术,它通过两个UNets(Parallel-UNet)的结合,实现了在单一网络中同时保持服装细节和适应显著的身体姿势及形状变化。这项技术在保持服装细节的同时,能够适应不同的身体姿势和形状,解决了以往方法在细节保持和姿势适应上的不足,达到了业界领先的性能。
高保真头部混合与色键技术
CHANGER是一个创新的工业级头部混合技术,通过色键技术实现高保真度的头部混合效果,特别适用于视觉效果(VFX)、数字人物创建和虚拟头像等领域。该技术通过分离背景集成和前景混合,利用色键生成无瑕疵的背景,并引入头部形状和长发增强(H^2增强)以及前景预测性注意力转换器(FPAT)模块,以提高对各种真实世界情况的泛化能力。CHANGER的主要优点包括高保真度、工业级结果、以及对真实世界案例的广泛适用性。
超高质量虚拟试穿,适用于任何服装和人物
Outfit Anyone 是一款超高质量虚拟试穿产品,使用户能够在不真实试穿衣物的情况下尝试不同的时尚款式。通过采用两个流的条件扩散模型,Outfit Anyone 能够灵活处理衣物变形,生成更逼真的效果。它具备可扩展性,可以调整姿势和身体形状等因素,适用于动漫角色到真实人物的图像。Outfit Anyone 在各种场景下的表现突出了其实用性和准备好投入实际应用的程度。
高保真动态城市场景重建技术
OmniRe 是一种用于高效重建高保真动态城市场景的全面方法,它通过设备日志来实现。该技术通过构建基于高斯表示的动态神经场景图,以及构建多个局部规范空间来模拟包括车辆、行人和骑行者在内的各种动态行为者,从而实现了对场景中不同对象的全面重建。OmniRe 允许我们全面重建场景中存在的不同对象,并随后实现所有参与者实时参与的重建场景的模拟。在 Waymo 数据集上的广泛评估表明,OmniRe 在定量和定性方面都大幅超越了先前的最先进方法。
AI试衣镜,上传照片和服装图像,AI即刻呈现试穿效果。
Digimirror是一款利用AI技术实现虚拟试衣的工具,可帮助在线购物者和企业快速预览服装效果,减少退货率。其主要优点包括免费试用、AI分析准确、可一键更换服装,定位于提升在线购物体验。
视频生成模型,支持无限长度高保真虚拟人视频生成
MuseV是一个基于扩散模型的虚拟人视频生成框架,支持无限长度视频生成,采用了新颖的视觉条件并行去噪方案。它提供了预训练的虚拟人视频生成模型,支持Image2Video、Text2Image2Video、Video2Video等功能,兼容Stable Diffusion生态系统,包括基础模型、LoRA、ControlNet等。它支持多参考图像技术,如IPAdapter、ReferenceOnly、ReferenceNet、IPAdapterFaceID等。MuseV的优势在于可生成高保真无限长度视频,定位于视频生成领域。
CRM是一个高保真的单图像到3D纹理网格的卷积重建模型
CRM是一个高保真的单图像到3D纹理网格的生成模型,它通过整合几何先验到网络设计中,能够从单个输入图像生成六个正交视图图像,然后利用卷积U-Net创建高分辨率的三平面(triplane)。CRM进一步使用Flexicubes作为几何表示,便于在纹理网格上进行直接的端到端优化。整个模型能够在10秒内从图像生成高保真的纹理网格,无需测试时优化。
Stability AI 高保真文本转语音模型
Stability AI 高保真文本转语音模型旨在提供对大规模数据集进行训练的语音合成模型的自然语言引导。它通过标注不同的说话者身份、风格和录音条件来进行自然语言引导。然后将此方法应用于45000小时的数据集,用于训练语音语言模型。此外,该模型提出了提高音频保真度的简单方法,尽管完全依赖于发现的数据,但在很大程度上表现出色。
AnyDressing 是一种基于潜在扩散模型的可定制多服装虚拟试穿技术。
AnyDressing 是一种创新的虚拟试穿技术,通过潜在扩散模型实现多服装的个性化定制。该技术能够根据用户提供的服装组合和个性化文本提示生成逼真的虚拟试穿图像。其主要优点包括高精度的服装纹理细节处理、与多种插件的兼容性以及强大的场景适应能力。AnyDressing 的背景信息显示,它是由字节跳动和清华大学的研究团队共同开发的,旨在推动虚拟试穿技术的发展。该产品目前处于研究阶段,尚未定价,主要面向学术研究和效果展示。
Animate Anyone 2 是一款高保真角色图像动画生成工具,支持环境适配。
Animate Anyone 2 是一种基于扩散模型的角色图像动画技术,能够生成与环境高度适配的动画。它通过提取环境表示作为条件输入,解决了传统方法中角色与环境缺乏合理关联的问题。该技术的主要优点包括高保真度、环境适配性强以及动态动作处理能力出色。它适用于需要高质量动画生成的场景,如影视制作、游戏开发等领域,能够帮助创作者快速生成具有环境交互的角色动画,节省时间和成本。
Genmo 的视频生成模型,具有高保真运动和强提示遵循性。
这是一个先进的视频生成模型,采用 AsymmDiT 架构,可免费试用。它能生成高保真视频,缩小了开源与闭源视频生成系统的差距。模型需要至少 4 个 H100 GPU 运行。
使用频域分解进行高保真、可迁移的NeRF编辑
Freditor是一种基于频域分解的NeRF编辑方法。它可以实现高保真的NeRF场景编辑,并且可迁移到其他场景。该方法将NeRF场景划分为高频和低频两部分,对低频部分进行风格迁移,并将高频细节重新集成,从而生成高保真的编辑结果。Freditor还支持在推理过程中对编辑强度进行控制。实验表明,该方法在保真度和可迁移性方面都优于现有的NeRF编辑方法。
集成空间编织注意力,提升扩散模型的高保真条件
HelloMeme是一个集成了空间编织注意力的扩散模型,旨在将高保真和丰富的条件嵌入到图像生成过程中。该技术通过提取驱动视频中的每一帧特征,并将其作为输入到HMControlModule,从而生成视频。通过进一步优化Animatediff模块,提高了生成视频的连续性和保真度。此外,HelloMeme还支持通过ARKit面部混合形状控制生成的面部表情,以及基于SD1.5的Lora或Checkpoint,实现了框架的热插拔适配器,不会影响T2I模型的泛化能力。
一种用于虚拟试穿任务的扩散模型,特别在真实世界场景中提高图像保真度和细节保存。
IDM-VTON是一种新型的扩散模型,用于基于图像的虚拟试穿任务,它通过结合视觉编码器和UNet网络的高级语义以及低级特征,生成具有高度真实感和细节的虚拟试穿图像。该技术通过提供详细的文本提示,增强了生成图像的真实性,并通过定制方法进一步提升了真实世界场景下的保真度和真实感。
AI服装搭配生成器,上传照片即可试穿数不尽时尚服装。
OutfitAI是一款AI服装搭配生成器,利用虚拟试衣技术帮助用户快速浏览各种时尚服装,适用于时尚购物。该产品的主要优点在于提供虚拟试穿功能,节省购物时间并帮助用户发现新款式。定位于时尚爱好者和购物者。
领先的虚拟试穿技术,改变时尚活动和消费者体验。
FASHN 是一种创新的虚拟试穿技术,旨在帮助时尚行业提升客户体验与市场推广效率。通过 FASHN,用户可以快速生成虚拟试穿效果,帮助设计师、品牌及零售商更好地展示服装。该平台支持无需复杂训练即可使用,适合各种规模的时尚企业,助力他们在竞争激烈的市场中脱颖而出。
高保真文本到4D生成
4D-fy是一种文本到4D生成方法,通过混合分数蒸馏采样技术,结合了多种预训练扩散模型的监督信号,实现了高保真的文本到4D场景生成。其方法通过神经表示参数化4D辐射场,使用静态和动态多尺度哈希表特征,并利用体积渲染从表示中渲染图像和视频。通过混合分数蒸馏采样,首先使用3D感知文本到图像模型(3D-T2I)的梯度来优化表示,然后结合文本到图像模型(T2I)的梯度来改善外观,最后结合文本到视频模型(T2V)的梯度来增加场景的运动。4D-fy可以生成具有引人入胜外观、3D结构和运动的4D场景。
高保真稠密SLAM
Gaussian SLAM能够从RGBD数据流重建可渲染的3D场景。它是第一个能够以照片级真实感重建现实世界场景的神经RGBD SLAM方法。通过利用3D高斯作为场景表示的主要单元,我们克服了以往方法的局限性。我们观察到传统的3D高斯在单目设置下很难使用:它们无法编码准确的几何信息,并且很难通过单视图顺序监督进行优化。通过扩展传统的3D高斯来编码几何信息,并设计一种新颖的场景表示以及增长和优化它的方法,我们提出了一种能够重建和渲染现实世界数据集的SLAM系统,而且不会牺牲速度和效率。高斯SLAM能够重建和以照片级真实感渲染现实世界场景。我们在常见的合成和真实世界数据集上对我们的方法进行了评估,并将其与其他最先进的SLAM方法进行了比较。最后,我们证明了我们得到的最终3D场景表示可以通过高效的高斯飞溅渲染实时渲染。
FitDiT 是一种用于高保真虚拟试衣的新型服装感知增强技术。
FitDiT 旨在解决图像基础虚拟试衣中高保真度和鲁棒性不足的问题,通过引入服装纹理提取器和频域学习,以及采用扩张松弛掩码策略,显著提升了虚拟试衣的贴合度和细节表现,其主要优点是能够生成逼真且细节丰富的服装图像,适用于多种场景,具有较高的实用价值和竞争力,目前尚未明确具体价格和市场定位。
© 2025 AIbase 备案号:闽ICP备08105208号-14