需求人群:
"MelodyFlow的目标受众是音乐制作人、作曲家、音频工程师以及任何对音乐创作和编辑感兴趣的个人。它特别适合那些希望通过简单的文本描述来生成或编辑音乐的用户,因为它提供了一种直观且高效的方式来实现音乐创作和修改,无需深入的音乐理论知识。"
使用场景示例:
将一首电子音乐曲目编辑成中东风格的曲目,通过改变乐器和基调来体现地域特色。
将摇滚歌曲转换成儿童舞曲,通过调整节奏和旋律来适应儿童的喜好。
将拉丁风格的流行曲目改编成摇滚风格,通过增强节奏和使用摇滚乐器来改变整体感觉。
产品特色:
- 高保真音乐生成:能够根据文本描述生成高质量的立体声音乐样本。
- 文本引导的音乐编辑:通过简单的文本描述,对现有音乐样本进行风格和内容上的编辑。
- 零样本测试时文本引导编辑:无需训练即可在测试时根据文本描述进行音乐编辑。
- 流匹配目标训练:基于流匹配目标训练的扩散变换器架构,提高了音乐生成和编辑的准确性。
- 正则化潜在反转方法:提供了一种新的正则化潜在反转方法,增强了音乐编辑的性能。
- 多样性和可变性:能够生成和编辑不同风格和情感的音乐,满足多样化的需求。
- 连续潜在表示:使用连续潜在表示序列,减少了信息丢失,提高了音乐质量。
使用教程:
1. 访问MelodyFlow的网页链接。
2. 阅读页面上的文本描述,了解模型的功能和使用方式。
3. 根据需要的音乐风格和情感,输入相应的文本描述。
4. 选择音乐编辑或生成的选项,并提交文本描述。
5. 模型将根据提供的文本描述生成或编辑音乐。
6. 听取生成或编辑后的音乐样本,并根据需要进行进一步的调整。
7. 如果需要进行更细致的编辑,可以利用MelodyFlow提供的正则化潜在反转方法进行微调。
8. 完成编辑后,可以下载或分享最终的音乐作品。
浏览量:41
高保真文本引导的音乐生成与编辑模型
MelodyFlow是一个基于文本控制的高保真音乐生成和编辑模型,它使用连续潜在表示序列,避免了离散表示的信息丢失问题。该模型基于扩散变换器架构,经过流匹配目标训练,能够生成和编辑多样化的高质量立体声样本,且具有文本描述的简单性。MelodyFlow还探索了一种新的正则化潜在反转方法,用于零样本测试时的文本引导编辑,并展示了其在多种音乐编辑提示中的优越性能。该模型在客观和主观指标上进行了评估,证明了其在标准文本到音乐基准测试中的质量与效率上与评估基线相当,并且在音乐编辑方面超越了以往的最先进技术。
实时生成逼真的全身虚拟人头像。
TaoAvatar 是一种高保真、轻量级的 3D 高斯喷溅技术(3DGS)全身虚拟人头像,能够生成个性化的全身动态头像,广泛应用于增强现实等场景。它的主要优点是能够在各种移动设备上以 90 FPS 的高帧率实时渲染,适配 Apple Vision Pro 等高分辨率设备,为用户提供沉浸式体验。
VideoPainter 是一款支持任意长度视频修复和编辑的工具,采用文本引导的插件式框架。
VideoPainter 是一款基于深度学习的视频修复和编辑工具,采用预训练的扩散变换器模型,结合轻量级背景上下文编码器和 ID 重采样技术,能够实现高质量的视频修复和编辑。该技术的重要性在于它突破了传统视频修复方法在长度和复杂度上的限制,为视频创作者提供了一种高效、灵活的工具。产品目前处于研究阶段,暂未明确价格,主要面向视频编辑领域的专业用户和研究人员。
NotaGen 是一个用于符号音乐生成的模型,采用大语言模型训练范式,专注于生成高质量古典乐谱。
NotaGen 是一款创新的符号音乐生成模型,通过预训练、微调和强化学习三个阶段提升音乐生成质量。它利用大语言模型技术,能够生成高质量的古典乐谱,为音乐创作带来新的可能性。该模型的主要优点包括高效生成、风格多样和高质量输出。它适用于音乐创作、教育和研究等领域,具有广泛的应用前景。
DiffRhythm 是一种基于潜在扩散模型的端到端全曲生成技术,可在短时间内生成包含人声和伴奏的完整歌曲。
DiffRhythm 是一种创新的音乐生成模型,利用潜在扩散技术实现了快速且高质量的全曲生成。该技术突破了传统音乐生成方法的限制,无需复杂的多阶段架构和繁琐的数据准备,仅需歌词和风格提示即可在短时间内生成长达 4 分 45 秒的完整歌曲。其非自回归结构确保了快速的推理速度,极大地提升了音乐创作的效率和可扩展性。该模型由西北工业大学音频、语音和语言处理小组(ASLP@NPU)和香港中文大学(深圳)大数据研究院共同开发,旨在为音乐创作提供一种简单、高效且富有创造力的解决方案。
Animate Anyone 2 是一款高保真角色图像动画生成工具,支持环境适配。
Animate Anyone 2 是一种基于扩散模型的角色图像动画技术,能够生成与环境高度适配的动画。它通过提取环境表示作为条件输入,解决了传统方法中角色与环境缺乏合理关联的问题。该技术的主要优点包括高保真度、环境适配性强以及动态动作处理能力出色。它适用于需要高质量动画生成的场景,如影视制作、游戏开发等领域,能够帮助创作者快速生成具有环境交互的角色动画,节省时间和成本。
基于 PyTorch 的音乐、歌曲和音频生成工具包,支持高质量音频生成
InspireMusic 是一个专注于音乐、歌曲和音频生成的 AIGC 工具包和模型框架,采用 PyTorch 开发。它通过音频标记化和解码过程,结合自回归 Transformer 和条件流匹配模型,实现高质量音乐生成。该工具包支持文本提示、音乐风格、结构等多种条件控制,能够生成 24kHz 和 48kHz 的高质量音频,并支持长音频生成。此外,它还提供了方便的微调和推理脚本,方便用户根据需求调整模型。InspireMusic 的开源旨在赋能普通用户通过音乐创作提升研究中的音效表现。
YuE是一个开源的音乐生成模型,能够将歌词转化为完整的歌曲。
YuE是一个开创性的开源基础模型系列,专为音乐生成设计,能够将歌词转化为完整的歌曲。它能够生成包含吸引人的主唱和配套伴奏的完整歌曲,支持多种音乐风格。该模型基于深度学习技术,具有强大的生成能力和灵活性,能够为音乐创作者提供强大的工具支持。其开源特性也使得研究人员和开发者可以在此基础上进行进一步的研究和开发。
YuE 是一个专注于全曲生成的开源音乐基础模型,能够根据歌词生成完整的音乐作品。
YuE 是由香港科技大学和多模态艺术投影团队开发的开源音乐生成模型。它能够根据给定的歌词生成长达 5 分钟的完整歌曲,包括人声和伴奏部分。该模型通过多种技术创新,如语义增强音频标记器、双标记技术和歌词链式思考等,解决了歌词到歌曲生成的复杂问题。YuE 的主要优点是能够生成高质量的音乐作品,并且支持多种语言和音乐风格,具有很强的可扩展性和可控性。该模型目前免费开源,旨在推动音乐生成技术的发展。
利用尖端AI技术,快速生成任何流派的原创音乐。
AI音乐生成器是一个基于人工智能的在线平台,能够快速生成原创音乐。它利用复杂的机器学习模型和神经网络技术,分析数百万首歌曲的模式和结构,生成高质量的旋律、和声和人声。该产品的主要优点是能够快速实现音乐创作,支持多种流派和风格的定制,并提供灵活的生成选项。它适合音乐创作者、内容制作者和企业用户,能够帮助他们节省创作时间,激发灵感,并生成符合特定需求的音乐。产品提供免费试用和多种付费计划,满足不同用户的需求。
轻松集成先进AI接口,赋能项目。
API.box是一个提供先进AI接口的平台,旨在帮助开发者快速集成AI功能到他们的项目中。它提供全面的API文档和详细的调用日志,确保高效开发和系统性能稳定。API.box具备企业级安全性和强大可扩展性,支持高并发需求,同时提供免费试用和商业用途的输出许可,是开发者和企业的理想选择。
首个说唱音乐生成数据集
RapBank是一个专注于说唱音乐的数据集,它从YouTube收集了大量说唱歌曲,并提供了一个精心设计的数据预处理流程。这个数据集对于音乐生成领域具有重要意义,因为它提供了大量的说唱音乐内容,可以用于训练和测试音乐生成模型。RapBank数据集包含94,164首歌曲链接,成功下载了92,371首歌曲,总时长达到5,586小时,覆盖84种不同的语言,其中英语歌曲的总时长最高,占总时长的大约三分之二。
免费AI音乐生成器,快速创作高质量音乐。
SunoAiFree是一个前沿的AI音乐生成平台,专注于音乐生成和文本到音乐的转换。它提供免费的AI音乐生成服务,使用户能够快速创作出符合行业标准的高质量音乐曲目。SunoAiFree的技术先进,支持多种语言输入,能够理解并生成相应的音乐,具有快速的音乐生成速度和高质量的输出,满足不同用户的需求。
音频驱动的高保真3D人头化身合成技术
GaussianSpeech是一种新颖的方法,它能够从语音信号中合成高保真度的动画序列,创建逼真、个性化的3D人头化身。该技术通过结合语音信号与3D高斯绘制技术,捕捉人类头部表情和细节动作,包括皮肤皱褶和更细微的面部运动。GaussianSpeech的主要优点包括实时渲染速度、自然的视觉动态效果,以及能够呈现多样化的面部表情和风格。该技术背后是大规模多视角音频-视觉序列数据集的创建,以及音频条件变换模型的开发,这些模型能够直接从音频输入中提取唇部和表情特征。
使用AI技术创作个性化音乐
免费AI歌曲生成器是一个在线工具,使用人工智能技术根据用户输入创作个性化歌曲。它结合旋律、和声和节奏,创造完整的歌曲。产品背景信息显示,该工具受到全球超过25,000名音乐家、内容创作者和音乐爱好者的信任。它提供免费、无需订阅的音乐创作服务,支持多种音乐风格,并允许用户商业使用生成的歌曲。
高保真头部混合与色键技术
CHANGER是一个创新的工业级头部混合技术,通过色键技术实现高保真度的头部混合效果,特别适用于视觉效果(VFX)、数字人物创建和虚拟头像等领域。该技术通过分离背景集成和前景混合,利用色键生成无瑕疵的背景,并引入头部形状和长发增强(H^2增强)以及前景预测性注意力转换器(FPAT)模块,以提高对各种真实世界情况的泛化能力。CHANGER的主要优点包括高保真度、工业级结果、以及对真实世界案例的广泛适用性。
快速为视频添加自定义音乐和旁白
Aimi Sync是一个在线应用,允许用户轻松地将定制化、生成性音乐同步到视频中。音乐100%版权清晰且免版税。产品的主要优点包括自动化音乐配乐、创意控制、多样化的音乐类型和多种语言及声音的旁白生成,使得内容能够触及更广泛的受众。Aimi Sync的背景信息显示,它旨在简化视频制作流程,提高效率,同时确保音乐和旁白的版权问题得到妥善处理。产品目前提供免费试用。
高效并行音频生成技术
SoundStorm是由Google Research开发的一种音频生成技术,它通过并行生成音频令牌来大幅减少音频合成的时间。这项技术能够生成高质量、与语音和声学条件一致性高的音频,并且可以与文本到语义模型结合,控制说话内容、说话者声音和说话轮次,实现长文本的语音合成和自然对话的生成。SoundStorm的重要性在于它解决了传统自回归音频生成模型在处理长序列时推理速度慢的问题,提高了音频生成的效率和质量。
一站式在线音频工具
Audio Muse是一个提供一站式在线音频处理需求的平台,它拥有全面的音频工具集合,用户可以轻松使用。该产品以其易用性、多功能性和AI音乐创作功能而受到音乐爱好者和创作者的欢迎。它支持用户在线创建独特的背景音乐,选择不同的音乐风格、主题和情绪,利用人工智能技术生成无限音乐。产品背景信息显示,已有1.4K音乐爱好者在此汇聚,1K创作者在此生成了超过1.5K的音乐曲目。
视频到音乐生成框架,实现音视频内容的语义对齐和节奏同步。
MuVi是一个创新的框架,它通过分析视频内容提取与上下文和时间相关的特征,生成与视频情绪、主题、节奏和节奏相匹配的音乐。该框架引入了对比性音乐-视觉预训练方案,确保音乐短语的周期性同步,并展示了基于流匹配的音乐生成器具有上下文学习能力,允许控制生成音乐的风格和类型。MuVi在音频质量和时间同步方面展现出优越的性能,为音视频内容的融合和沉浸式体验提供了新的解决方案。
Genmo 的视频生成模型,具有高保真运动和强提示遵循性。
这是一个先进的视频生成模型,采用 AsymmDiT 架构,可免费试用。它能生成高保真视频,缩小了开源与闭源视频生成系统的差距。模型需要至少 4 个 H100 GPU 运行。
统一文本、音乐和动作生成模型
UniMuMo是一个多模态模型,能够将任意文本、音乐和动作数据作为输入条件,生成跨所有三种模态的输出。该模型通过将音乐、动作和文本转换为基于令牌的表示,通过统一的编码器-解码器转换器架构桥接这些模态。它通过微调现有的单模态预训练模型,显著降低了计算需求。UniMuMo在音乐、动作和文本模态的所有单向生成基准测试中都取得了有竞争力的结果。
集成空间编织注意力,提升扩散模型的高保真条件
HelloMeme是一个集成了空间编织注意力的扩散模型,旨在将高保真和丰富的条件嵌入到图像生成过程中。该技术通过提取驱动视频中的每一帧特征,并将其作为输入到HMControlModule,从而生成视频。通过进一步优化Animatediff模块,提高了生成视频的连续性和保真度。此外,HelloMeme还支持通过ARKit面部混合形状控制生成的面部表情,以及基于SD1.5的Lora或Checkpoint,实现了框架的热插拔适配器,不会影响T2I模型的泛化能力。
开源的音乐生成模型
QA-MDT是一个开源的音乐生成模型,集成了最先进的模型用于音乐生成。它基于多个开源项目,如AudioLDM、PixArt-alpha、MDT、AudioMAE和Open-Sora等。QA-MDT模型通过使用不同的训练策略,能够生成高质量的音乐。此模型特别适合对音乐生成有兴趣的研究人员和开发者使用。
利用AI创作音乐
OpenMusic是一个基于人工智能的音乐创作模型,它利用深度学习技术,能够根据用户输入的指令或音乐片段生成新的音乐作品。这个模型在音乐制作和创作领域具有革命性的意义,因为它降低了创作音乐的门槛,让没有音乐背景的人也能创作出动听的音乐。
音乐生成系统,支持多语言声乐生成和音乐编辑。
Seed-Music 是一个音乐生成系统,它通过统一的框架支持生成具有表现力的多语言声乐音乐,允许精确到音符级别的调整,并提供将用户自己的声音融入音乐创作的能力。该系统采用先进的语言模型和扩散模型,为音乐家提供多样化的创作工具,满足不同音乐制作需求。
为狗狗定制放松音乐的AI工具
DogMusic AI是一款利用先进AI技术为宠物狗定制放松音乐的工具。它通过分析狗狗的喜好,快速生成个性化的音乐,帮助狗狗保持平静和快乐。产品背景信息显示,有185名用户正在使用DogMusic AI,且目前所有计划对前60名顾客提供40%的折扣。
使用文本生成音乐的模型
FluxMusic是一个基于PyTorch实现的文本到音乐生成模型,它通过扩散式修正流变换器探索了一种简单的文本到音乐生成方法。这个模型可以生成根据文本提示的音乐片段,具有创新性和高度的技术复杂性。它代表了音乐生成领域的前沿技术,为音乐创作提供了新的可能。
© 2025 AIbase 备案号:闽ICP备08105208号-14