需求人群:
"该产品适用于影视制作人员、游戏开发者、动画师等需要高质量动画生成的专业人士。它能够帮助他们快速生成具有环境交互的角色动画,提高创作效率,减少制作成本,并提升作品的视觉效果和交互性。"
使用场景示例:
在影视制作中,快速生成角色动画并与场景自然融合,节省特效制作时间。
为游戏开发创建具有环境交互的角色动画,提升游戏沉浸感。
用于广告视频制作,生成与背景高度适配的角色动画,增强视觉吸引力。
产品特色:
环境适配:能够将角色动画与环境背景自然融合,生成连贯的场景。
高保真动画:生成高质量的角色动画,保持角色一致性。
动态动作处理:支持复杂多样的动作模式,适应不同场景需求。
对象交互增强:通过对象引导器提取交互对象特征,增强交互效果。
姿态调节策略:优化身体部位的空间关系,提升动作自然度。
使用教程:
1. 准备角色图像和驱动视频,确保视频包含角色动作和环境背景。
2. 将角色图像和驱动视频输入 Animate Anyone 2 模型。
3. 模型提取环境表示和角色动作信号,生成带有环境适配的动画。
4. 调整生成的动画参数(如动作流畅度、环境融合度等)以满足需求。
5. 导出生成的动画并应用于目标场景(如视频、游戏等)。
浏览量:186
最新流量情况
月访问量
78.22k
平均访问时长
00:00:19
每次访问页数
1.47
跳出率
48.52%
流量来源
直接访问
42.71%
自然搜索
36.39%
邮件
0.10%
外链引荐
15.47%
社交媒体
4.81%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
24.24%
德国
4.10%
印度
4.73%
美国
12.37%
越南
5.73%
Animate Anyone 2 是一款高保真角色图像动画生成工具,支持环境适配。
Animate Anyone 2 是一种基于扩散模型的角色图像动画技术,能够生成与环境高度适配的动画。它通过提取环境表示作为条件输入,解决了传统方法中角色与环境缺乏合理关联的问题。该技术的主要优点包括高保真度、环境适配性强以及动态动作处理能力出色。它适用于需要高质量动画生成的场景,如影视制作、游戏开发等领域,能够帮助创作者快速生成具有环境交互的角色动画,节省时间和成本。
Genmo 的视频生成模型,具有高保真运动和强提示遵循性。
这是一个先进的视频生成模型,采用 AsymmDiT 架构,可免费试用。它能生成高保真视频,缩小了开源与闭源视频生成系统的差距。模型需要至少 4 个 H100 GPU 运行。
高保真图像到视频生成框架
AtomoVideo是一个新颖的高保真图像到视频(I2V)生成框架,它从输入图像生成高保真视频,与现有工作相比,实现了更好的运动强度和一致性,并且无需特定调整即可与各种个性化T2I模型兼容。
高保真、时间连贯的视频编辑
MagicEdit是一款高保真、时间连贯的视频编辑模型,通过明确分离外观和运动的学习,支持视频风格化、局部编辑、视频混合和视频外扩等多种编辑应用。MagicEdit还支持视频外扩任务,无需重新训练即可实现。
高保真文本引导的音乐生成与编辑模型
MelodyFlow是一个基于文本控制的高保真音乐生成和编辑模型,它使用连续潜在表示序列,避免了离散表示的信息丢失问题。该模型基于扩散变换器架构,经过流匹配目标训练,能够生成和编辑多样化的高质量立体声样本,且具有文本描述的简单性。MelodyFlow还探索了一种新的正则化潜在反转方法,用于零样本测试时的文本引导编辑,并展示了其在多种音乐编辑提示中的优越性能。该模型在客观和主观指标上进行了评估,证明了其在标准文本到音乐基准测试中的质量与效率上与评估基线相当,并且在音乐编辑方面超越了以往的最先进技术。
高保真文本到4D生成
4D-fy是一种文本到4D生成方法,通过混合分数蒸馏采样技术,结合了多种预训练扩散模型的监督信号,实现了高保真的文本到4D场景生成。其方法通过神经表示参数化4D辐射场,使用静态和动态多尺度哈希表特征,并利用体积渲染从表示中渲染图像和视频。通过混合分数蒸馏采样,首先使用3D感知文本到图像模型(3D-T2I)的梯度来优化表示,然后结合文本到图像模型(T2I)的梯度来改善外观,最后结合文本到视频模型(T2V)的梯度来增加场景的运动。4D-fy可以生成具有引人入胜外观、3D结构和运动的4D场景。
Stability AI 高保真文本转语音模型
Stability AI 高保真文本转语音模型旨在提供对大规模数据集进行训练的语音合成模型的自然语言引导。它通过标注不同的说话者身份、风格和录音条件来进行自然语言引导。然后将此方法应用于45000小时的数据集,用于训练语音语言模型。此外,该模型提出了提高音频保真度的简单方法,尽管完全依赖于发现的数据,但在很大程度上表现出色。
音频驱动的高保真3D人头化身合成技术
GaussianSpeech是一种新颖的方法,它能够从语音信号中合成高保真度的动画序列,创建逼真、个性化的3D人头化身。该技术通过结合语音信号与3D高斯绘制技术,捕捉人类头部表情和细节动作,包括皮肤皱褶和更细微的面部运动。GaussianSpeech的主要优点包括实时渲染速度、自然的视觉动态效果,以及能够呈现多样化的面部表情和风格。该技术背后是大规模多视角音频-视觉序列数据集的创建,以及音频条件变换模型的开发,这些模型能够直接从音频输入中提取唇部和表情特征。
集成空间编织注意力,提升扩散模型的高保真条件
HelloMeme是一个集成了空间编织注意力的扩散模型,旨在将高保真和丰富的条件嵌入到图像生成过程中。该技术通过提取驱动视频中的每一帧特征,并将其作为输入到HMControlModule,从而生成视频。通过进一步优化Animatediff模块,提高了生成视频的连续性和保真度。此外,HelloMeme还支持通过ARKit面部混合形状控制生成的面部表情,以及基于SD1.5的Lora或Checkpoint,实现了框架的热插拔适配器,不会影响T2I模型的泛化能力。
Lyria 2 是一款高保真音乐生成模型。
Lyria 2 是最新的音乐生成模型,能够创作多种风格的高保真音乐,适用于复杂的音乐作品。该模型不仅为音乐创作者提供了强大的工具,还推动了音乐生成技术的发展,提升了创作效率。Lyria 2 的目标是让音乐创作变得更加简单和可及,为专业音乐人和爱好者提供灵活的创作支持。
使用频域分解进行高保真、可迁移的NeRF编辑
Freditor是一种基于频域分解的NeRF编辑方法。它可以实现高保真的NeRF场景编辑,并且可迁移到其他场景。该方法将NeRF场景划分为高频和低频两部分,对低频部分进行风格迁移,并将高频细节重新集成,从而生成高保真的编辑结果。Freditor还支持在推理过程中对编辑强度进行控制。实验表明,该方法在保真度和可迁移性方面都优于现有的NeRF编辑方法。
视频生成模型,支持无限长度高保真虚拟人视频生成
MuseV是一个基于扩散模型的虚拟人视频生成框架,支持无限长度视频生成,采用了新颖的视觉条件并行去噪方案。它提供了预训练的虚拟人视频生成模型,支持Image2Video、Text2Image2Video、Video2Video等功能,兼容Stable Diffusion生态系统,包括基础模型、LoRA、ControlNet等。它支持多参考图像技术,如IPAdapter、ReferenceOnly、ReferenceNet、IPAdapterFaceID等。MuseV的优势在于可生成高保真无限长度视频,定位于视频生成领域。
高保真头部混合与色键技术
CHANGER是一个创新的工业级头部混合技术,通过色键技术实现高保真度的头部混合效果,特别适用于视觉效果(VFX)、数字人物创建和虚拟头像等领域。该技术通过分离背景集成和前景混合,利用色键生成无瑕疵的背景,并引入头部形状和长发增强(H^2增强)以及前景预测性注意力转换器(FPAT)模块,以提高对各种真实世界情况的泛化能力。CHANGER的主要优点包括高保真度、工业级结果、以及对真实世界案例的广泛适用性。
基于扩散模型的高保真服装重建虚拟试穿技术
TryOffDiff是一种基于扩散模型的高保真服装重建技术,用于从穿着个体的单张照片中生成标准化的服装图像。这项技术与传统的虚拟试穿不同,它旨在提取规范的服装图像,这在捕捉服装形状、纹理和复杂图案方面提出了独特的挑战。TryOffDiff通过使用Stable Diffusion和基于SigLIP的视觉条件来确保高保真度和细节保留。该技术在VITON-HD数据集上的实验表明,其方法优于基于姿态转移和虚拟试穿的基线方法,并且需要较少的预处理和后处理步骤。TryOffDiff不仅能够提升电子商务产品图像的质量,还能推进生成模型的评估,并激发未来在高保真重建方面的工作。
高保真可动画 3D 人类重建模型,快速生成动画角色。
LHM(大规模可动画人类重建模型)利用多模态变压器架构进行高保真 3D 头像重建,支持从单张图像生成可动画的 3D 人类形象。该模型能够详细保留服装几何和纹理,尤其是在面部身份和细节恢复方面表现优异,适合对 3D 重建精度有较高要求的应用场景。
CRM是一个高保真的单图像到3D纹理网格的卷积重建模型
CRM是一个高保真的单图像到3D纹理网格的生成模型,它通过整合几何先验到网络设计中,能够从单个输入图像生成六个正交视图图像,然后利用卷积U-Net创建高分辨率的三平面(triplane)。CRM进一步使用Flexicubes作为几何表示,便于在纹理网格上进行直接的端到端优化。整个模型能够在10秒内从图像生成高保真的纹理网格,无需测试时优化。
高保真视频编码,适用于大运动场景的视频自编码器。
这是一个视频变分自编码器(VAE),旨在减少视频冗余并促进高效视频生成。该模型通过观察发现,将图像VAE直接扩展到3D VAE会引入运动模糊和细节失真,因此提出了时间感知的空间压缩以更好地编码和解码空间信息。此外,该模型还集成了一个轻量级的运动压缩模型以实现进一步的时间压缩。通过利用文本到视频数据集中固有的文本信息,并在模型中加入文本指导,显著提高了重建质量,特别是在细节保留和时间稳定性方面。该模型还通过在图像和视频上进行联合训练来提高其通用性,不仅提高了重建质量,还使模型能够执行图像和视频的自编码。广泛的评估表明,该方法的性能优于最近的强基线。
从文本生成高保真3D服装资产
ClotheDreamer是一个基于3D高斯的文本引导服装生成模型,能够从文本描述生成高保真的、可穿戴的3D服装资产。它采用了一种新颖的表示方法Disentangled Clothe Gaussian Splatting (DCGS),允许服装和人体分别进行优化。该技术通过双向Score Distillation Sampling (SDS)来提高服装和人体渲染的质量,并支持自定义服装模板输入。ClotheDreamer的合成3D服装可以轻松应用于虚拟试穿,并支持物理精确的动画。
生成高保真音乐的文本到音频模型
MusicLM是一个模型,可以根据文本描述生成高保真音乐。它可以生成24kHz的音频,音乐风格和文本描述一致,并支持根据旋律进行条件生成。通过使用MusicCaps数据集,模型在音频质量和与文本描述的一致性方面优于之前的系统。MusicLM可以应用于不同的场景,如生成音乐片段、根据画作描述生成音乐等。
高保真3D头像生成模型
RodinHD是一个基于扩散模型的高保真3D头像生成技术,由Bowen Zhang、Yiji Cheng等研究者开发,旨在从单一肖像图像生成细节丰富的3D头像。该技术解决了现有方法在捕捉发型等复杂细节时的不足,通过新颖的数据调度策略和权重整合正则化项,提高了解码器渲染锐利细节的能力。此外,通过多尺度特征表示和交叉注意力机制,优化了肖像图像的引导效果,生成的3D头像在细节上显著优于以往方法,并且能够泛化到野外肖像输入。
高保真稠密SLAM
Gaussian SLAM能够从RGBD数据流重建可渲染的3D场景。它是第一个能够以照片级真实感重建现实世界场景的神经RGBD SLAM方法。通过利用3D高斯作为场景表示的主要单元,我们克服了以往方法的局限性。我们观察到传统的3D高斯在单目设置下很难使用:它们无法编码准确的几何信息,并且很难通过单视图顺序监督进行优化。通过扩展传统的3D高斯来编码几何信息,并设计一种新颖的场景表示以及增长和优化它的方法,我们提出了一种能够重建和渲染现实世界数据集的SLAM系统,而且不会牺牲速度和效率。高斯SLAM能够重建和以照片级真实感渲染现实世界场景。我们在常见的合成和真实世界数据集上对我们的方法进行了评估,并将其与其他最先进的SLAM方法进行了比较。最后,我们证明了我们得到的最终3D场景表示可以通过高效的高斯飞溅渲染实时渲染。
使用极少步骤生成高保真、多样化样本
Imagine Flash 是一种新型的扩散模型,它通过后向蒸馏框架,使用仅一到三个步骤就能实现高保真、多样化的样本生成。该模型包含三个关键组件:后向蒸馏、动态适应的知识转移以及噪声校正技术,显著提升了在极低步骤情况下的图像质量和样本多样性。
开创高保真、可控视频生成新领域。
Gen-3 Alpha 是 Runway 训练的一系列模型中的首个,它在新的基础设施上训练,专为大规模多模态训练而建。它在保真度、一致性和动作方面相较于 Gen-2 有重大改进,并朝着构建通用世界模型迈进了一步。该模型能够生成具有丰富动作、手势和情感的表达性人物角色,为叙事提供了新的机会。
通用角色图像动画框架,支持多种角色类型动画生成。
Animate-X是一个基于LDM的通用动画框架,用于各种角色类型(统称为X),包括人物拟态角色。该框架通过引入姿势指示器来增强运动表示,可以更全面地从驱动视频中捕获运动模式。Animate-X的主要优点包括对运动的深入建模,能够理解驱动视频的运动模式,并将其灵活地应用到目标角色上。此外,Animate-X还引入了一个新的Animated Anthropomorphic Benchmark (A2Bench) 来评估其在通用和广泛适用的动画图像上的性能。
高保真几何渲染
这款产品是一种3D GAN技术,通过学习基于神经体积渲染的方法,能够以前所未有的细节解析细粒度的3D几何。产品采用学习型采样器,加速3D GAN训练,使用更少的深度采样,实现在训练和推断过程中直接渲染完整分辨率图像的每个像素,同时学习高质量的表面几何,合成高分辨率3D几何和严格视角一致的图像。产品在FFHQ和AFHQ上展示了最先进的3D几何质量,为3D GAN中的无监督学习建立了新的标准。
大规模基础世界模型,生成多样的3D可操作环境
Genie 2是由Google DeepMind开发的一款大规模基础世界模型,能够基于单一提示图像生成无尽的、可操作的、可玩的3D环境,用于训练和评估具身智能体。Genie 2代表了深度学习和人工智能领域的一大进步,它通过模拟虚拟世界及其行动后果,展示了在大规模生成模型中的多种紧急能力,如物体交互、复杂角色动画、物理模拟等。Genie 2的研究推动了新的创意工作流程,用于原型化交互体验,并为未来更通用的AI系统和智能体的研究提供了新的可能性。
一款简单易用的动画视频制作软件,适合制作企业宣传、教育课件等。
万彩动画大师是一款面向企业和教育领域的动画视频制作软件。它以简单易用的操作界面和丰富的模板资源,帮助用户快速创建高质量的动画视频。该产品的主要优点是操作简单,无需专业动画制作技能,即可生成生动有趣的动画内容。它适用于企业宣传、产品介绍、教育培训等多种场景,能够有效提升信息传播的效果和吸引力。万彩动画大师提供免费版本,同时也有付费会员服务,以满足不同用户的需求。
© 2025 AIbase 备案号:闽ICP备08105208号-14