需求人群:
"Genie 2的目标受众是人工智能研究者、游戏开发者和交互体验设计师。对于研究者而言,Genie 2提供了一个平台来安全地训练和评估更通用的具身智能体。对于游戏开发者,它能够快速原型化新的游戏环境和体验。对于设计师,Genie 2可以将概念艺术和绘图转化为完全交互的环境,加速创意过程。"
使用场景示例:
使用Genie 2生成一个古埃及背景的游戏环境,并测试智能体在其中的导航能力。
利用Genie 2创建一个未来城市的模拟环境,用于测试自动驾驶车辆的算法。
通过Genie 2模拟一个复杂的物理场景,如水流和烟雾效果,用于电影特效预览。
产品特色:
生成多样的3D虚拟环境:Genie 2能够根据文本描述生成丰富的3D世界。
模拟行动后果:模型能够预测并模拟任何动作的后果,如跳跃、游泳等。
物体交互和物理模拟:Genie 2能够模拟复杂的物体交互和物理效果。
角色动画和NPC行为:模型学会了如何动画化不同类型的角色和NPC。
长时记忆和一致性:Genie 2能够记住不在视野中的世界部分,并在它们再次变得可观察时准确渲染它们。
多样化的视角和环境:Genie 2可以创建不同视角,如第一人称、等角视角或第三人称驾驶视频。
从真实世界图像生成:Genie 2也可以从真实世界图像中生成,模拟现实世界的场景。
使用教程:
1. 准备一个文本描述或图像,描述你想要生成的3D世界。
2. 使用Genie 2的接口输入文本或上传图像,启动环境生成过程。
3. Genie 2将根据输入生成一个3D环境,用户可以通过键盘和鼠标与环境互动。
4. 观察Genie 2生成的环境,并根据需要进行调整或优化。
5. 在生成的环境中部署智能体,进行训练或评估。
6. 记录智能体在环境中的表现,用于后续的研究和开发。
7. 利用Genie 2的模拟结果,进一步开发和完善智能体的行为。
浏览量:39
最新流量情况
月访问量
1384.10k
平均访问时长
00:01:16
每次访问页数
1.83
跳出率
59.18%
流量来源
直接访问
35.32%
自然搜索
56.29%
邮件
0.06%
外链引荐
6.00%
社交媒体
2.14%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
4.26%
英国
5.86%
印度
6.48%
韩国
4.56%
美国
26.82%
大规模基础世界模型,生成多样的3D可操作环境
Genie 2是由Google DeepMind开发的一款大规模基础世界模型,能够基于单一提示图像生成无尽的、可操作的、可玩的3D环境,用于训练和评估具身智能体。Genie 2代表了深度学习和人工智能领域的一大进步,它通过模拟虚拟世界及其行动后果,展示了在大规模生成模型中的多种紧急能力,如物体交互、复杂角色动画、物理模拟等。Genie 2的研究推动了新的创意工作流程,用于原型化交互体验,并为未来更通用的AI系统和智能体的研究提供了新的可能性。
3D网格生成与语言模型的统一
LLaMA-Mesh是一项将大型语言模型(LLMs)预训练在文本上扩展到生成3D网格的能力的技术。这项技术利用了LLMs中已经嵌入的空间知识,并实现了对话式3D生成和网格理解。LLaMA-Mesh的主要优势在于它能够将3D网格的顶点坐标和面定义表示为纯文本,允许与LLMs直接集成而无需扩展词汇表。该技术的主要优点包括能够从文本提示生成3D网格、按需产生交错的文本和3D网格输出,以及理解和解释3D网格。LLaMA-Mesh在保持强大的文本生成性能的同时,实现了与从头开始训练的模型相当的网格生成质量。
构建视频搜索和摘要代理,提取视频洞察
NVIDIA Video Search and Summarization 是一个利用深度学习和人工智能技术,能够处理大量实时或存档视频,并从中提取信息以进行摘要和交互式问答的模型。该产品代表了视频内容分析和处理技术的最新进展,它通过生成式AI和视频到文本的技术,为用户提供了一种全新的视频内容管理和检索方式。NVIDIA Video Search and Summarization 的主要优点包括高效的视频内容分析、准确的摘要生成和交互式问答能力,这些功能对于需要处理大量视频数据的企业来说至关重要。产品背景信息显示,NVIDIA 致力于通过其先进的AI模型,推动视频内容的智能化处理和分析。
超轻量级数字人模型,移动端实时运行
Ultralight-Digital-Human是一个超轻量级的数字人模型,可以在移动端实时运行。这个模型是开源的,据开发者所知,它是第一个如此轻量级的开源数字人模型。该模型的主要优点包括轻量级设计,适合移动端部署,以及实时运行的能力。它的背后是深度学习技术,特别是在人脸合成和声音模拟方面的应用,这使得数字人模型能够以较低的资源消耗实现高质量的表现。产品目前是免费的,主要面向技术爱好者和开发者。
基于深度学习的高质量文本到语音合成模型
F5-TTS是由SWivid团队开发的一个文本到语音合成(TTS)模型,它利用深度学习技术将文本转换为自然流畅、忠实于原文的语音输出。该模型在生成语音时,不仅追求高自然度,还注重语音的清晰度和准确性,适用于需要高质量语音合成的各种应用场景,如语音助手、有声读物制作、自动新闻播报等。F5-TTS模型在Hugging Face平台上发布,用户可以方便地下载和部署,支持多种语言和声音类型,具有很高的灵活性和可扩展性。
使用Llama模型的语音合成工具
Llama 3.2 3b Voice 是基于Hugging Face平台的一款语音合成模型,能够将文本转换为自然流畅的语音。该模型采用了先进的深度学习技术,能够模仿人类说话的语调、节奏和情感,适用于多种场景,如语音助手、有声读物、自动播报等。
基于物理的角色动画研究项目
ProtoMotions是一个致力于创建交互式物理模拟虚拟代理的项目。它支持IsaacGym和IsaacSim,并且基于Hydra和OmegaConfig构建,使得配置组合变得简单。这个项目为研究者和开发者提供了一个平台,用于开发和测试基于物理的角色动画技术。它不仅能够用于学术研究,还能在游戏、电影和虚拟现实等领域中应用。
提供AI和机器学习课程
Udacity人工智能学院提供包括深度学习、计算机视觉、自然语言处理和AI产品管理在内的AI培训和机器学习课程。这些课程旨在帮助学生掌握人工智能领域的最新技术,为未来的职业生涯打下坚实的基础。
高性能AI加速器,专为AI工作负载设计。
Intel® Gaudi® 3 AI Accelerator是英特尔推出的一款高性能人工智能加速器,它基于高效的英特尔® Gaudi® 平台构建,具备出色的MLPerf基准性能,旨在处理要求苛刻的训练和推理任务。该加速器支持数据中心或云中的大型语言模型、多模态模型和企业RAG等人工智能应用程序,能够在您可能已经拥有的以太网基础设施上运行。无论您需要单个加速器还是数千个加速器,英特尔Gaudi 3都可以在您的AI成功中发挥关键作用。
利用AI创作音乐
OpenMusic是一个基于人工智能的音乐创作模型,它利用深度学习技术,能够根据用户输入的指令或音乐片段生成新的音乐作品。这个模型在音乐制作和创作领域具有革命性的意义,因为它降低了创作音乐的门槛,让没有音乐背景的人也能创作出动听的音乐。
谷歌旗下领先的人工智能研究公司
Google DeepMind 是谷歌旗下的一家领先的人工智能公司,专注于开发先进的机器学习算法和系统。DeepMind 以其在深度学习和强化学习领域的开创性工作而闻名,其研究涵盖了从游戏到医疗保健等多个领域。DeepMind 的目标是通过构建智能系统来解决复杂的问题,推动科学和医学的进步。
生成新视角的图像,保持语义信息。
GenWarp是一个用于从单张图像生成新视角图像的模型,它通过语义保持的生成变形框架,使文本到图像的生成模型能够学习在哪里变形和在哪里生成。该模型通过增强交叉视角注意力与自注意力来解决现有方法的局限性,通过条件化生成模型在源视图图像上,并纳入几何变形信号,提高了在不同领域场景下的性能。
统一多模态理解和生成的单一变换器
Show-o是一个用于多模态理解和生成的单一变换器模型,它能够处理图像字幕、视觉问答、文本到图像生成、文本引导的修复和扩展以及混合模态生成。该模型由新加坡国立大学的Show Lab和字节跳动共同开发,采用最新的深度学习技术,能够理解和生成多种模态的数据,是人工智能领域的一大突破。
先进的人工智能视觉模型,专门分析和理解人类动作。
Sapiens视觉模型由Meta Reality Labs开发,专注于处理人类视觉任务,包括2D姿态估计、身体部位分割、深度估计和表面法线预测等。模型在超过3亿张人类图像上训练,具备高分辨率图像处理能力,并能在数据稀缺情况下表现出色。其设计简单、易于扩展,性能在增加参数后显著提升,已在多个测试中超越现有基线模型。
一万亿Token和34亿张图像的多模态数据集
MINT-1T是由Salesforce AI开源的多模态数据集,包含一万亿个文本标记和34亿张图像,规模是现有开源数据集的10倍。它不仅包含HTML文档,还包括PDF文档和ArXiv论文,丰富了数据集的多样性。MINT-1T的数据集构建涉及多种来源的数据收集、处理和过滤步骤,确保了数据的高质量和多样性。
快速、多语言支持的OCR工具包
RapidOCR是一个基于ONNXRuntime、OpenVINO和PaddlePaddle的OCR多语言工具包。它将PaddleOCR模型转换为ONNX格式,支持Python/C++/Java/C#等多平台部署,具有快速、轻量级、智能的特点,并解决了PaddleOCR内存泄露的问题。
深度学习领域的经典教材中文翻译
《深度学习》是一本由Simon J.D. Prince所著的深度学习领域的经典教材,MIT Press于2023年12月5日出版。本书涵盖了深度学习领域的许多关键概念,适合初学者和有经验的开发者阅读。本仓库提供了该书的中文翻译,翻译基于原书的最新版本,使用ChatGPT进行机翻并进行人工审核,确保翻译的准确性。
用于训练大型语言模型的开源合成数据生成管道。
Nemotron-4 340B是NVIDIA发布的一系列开放模型,专为生成合成数据以训练大型语言模型(LLMs)而设计。这些模型经过优化,可以与NVIDIA NeMo和NVIDIA TensorRT-LLM配合使用,以提高训练和推理的效率。Nemotron-4 340B包括基础、指令和奖励模型,形成一个生成合成数据的管道,用于训练和完善LLMs。这些模型在Hugging Face上提供下载,并很快将在ai.nvidia.com上提供,作为NVIDIA NIM微服务的一部分。
提供关于人工智能的最佳资源,学习机器学习、数据科学、自然语言处理等。
AI Online Course是一个互动学习平台,提供清晰简明的人工智能介绍,使复杂的概念易于理解。它涵盖机器学习、深度学习、计算机视觉、自动驾驶、聊天机器人等方面的知识,并强调实际应用和技术优势。
通过对比对齐进行 Pure 和 Lightning ID 定制
PuLID 是一个专注于人脸身份定制的深度学习模型,通过对比对齐技术实现高保真度的人脸身份编辑。该模型能够减少对原始模型行为的干扰,同时提供多种应用,如风格变化、IP融合、配饰修改等。
轻量级但功能强大的多模态模型家族。
Bunny 是一系列轻量级但功能强大的多模态模型,提供多种即插即用的视图编码器和语言主干网络。通过从更广泛的数据源进行精选选择,构建更丰富的训练数据,以补偿模型尺寸的减小。Bunny-v1.0-3B 模型在性能上超越了同类大小甚至更大的 MLLMs(7B)模型,并与 13B 模型性能相当。
一款由XTuner优化的LLaVA模型,结合了图像和文本处理能力。
llava-llama-3-8b-v1_1是一个由XTuner优化的LLaVA模型,它基于meta-llama/Meta-Llama-3-8B-Instruct和CLIP-ViT-Large-patch14-336,并通过ShareGPT4V-PT和InternVL-SFT进行了微调。该模型专为图像和文本的结合处理而设计,具有强大的多模态学习能力,适用于各种下游部署和评估工具包。
实时生成逼真语音驱动人脸
VASA-1是由微软研究院开发的一个模型,专注于实时生成与音频相匹配的逼真人脸动画。该技术通过深度学习算法,能够根据输入的语音内容,自动生成相应的口型和面部表情,为用户提供一种全新的交互体验。VASA-1的主要优势在于其高度逼真的生成效果和实时响应能力,使得虚拟角色能够更加自然地与用户进行互动。目前,VASA-1主要应用于虚拟助手、在线教育、娱乐等领域,其定价策略尚未公布,但预计将提供免费试用版本供用户体验。
人工智能入门教程网站,提供全面的机器学习与深度学习知识。
该网站由作者从 2015 年开始学习机器学习和深度学习,整理并编写的一系列实战教程。涵盖监督学习、无监督学习、深度学习等多个领域,既有理论推导,又有代码实现,旨在帮助初学者全面掌握人工智能的基础知识和实践技能。网站拥有独立域名,内容持续更新,欢迎大家关注和学习。
实时一步潜在扩散模型,可用图像条件控制生成
SDXS是一种新的扩散模型,通过模型微型化和减少采样步骤,大幅降低了模型延迟。它利用知识蒸馏来简化U-Net和图像解码器架构,并引入了一种创新的单步DM训练技术,使用特征匹配和分数蒸馆。SDXS-512和SDXS-1024模型可在单个GPU上分别实现约100 FPS和30 FPS的推理速度,比之前模型快30至60倍。此外,该训练方法在图像条件控制方面也有潜在应用,可实现高效的图像到图像翻译。
HyperGAI推出的创新多模态LLM框架,旨在理解和处理文本、图像、视频等多种输入模态
HPT(Hyper-Pretrained Transformers)是HyperGAI研究团队推出的新型多模态大型语言模型框架,它能够高效且可扩展地训练大型多模态基础模型,理解包括文本、图像、视频等多种输入模态。HPT框架可以从头开始训练,也可以通过现有的预训练视觉编码器和/或大型语言模型进行高效适配。
© 2024 AIbase 备案号:闽ICP备08105208号-14