需求人群:
"GaussianSpeech的目标受众是虚拟现实、增强现实、游戏开发、电影制作和动画制作等领域的专业人士。这些用户需要逼真的3D人头化身来增强用户体验,而GaussianSpeech提供的高保真度和实时渲染能力正好满足这一需求。"
使用场景示例:
在虚拟现实中,使用GaussianSpeech创建的3D人头化身可以作为用户在虚拟世界中的代表,提供更自然和真实的交互体验。
在电影制作中,GaussianSpeech可以用于生成逼真的面部动画,减少实际拍摄中对演员的需求,降低成本并提高效率。
在游戏开发中,GaussianSpeech可以用于创建NPC的面部动画,使游戏角色的表情更加丰富和真实,增强游戏的沉浸感。
产品特色:
• 音频驱动:通过语音信号合成逼真的3D人头化身动画。
• 高保真度:生成包括牙齿、皱纹和眼睛中的光泽在内的细节动画。
• 实时渲染:以实时渲染速度呈现自然的视觉动态效果。
• 个性化表达:根据语音信号生成与表情相关的个性化颜色。
• 数据集支持:使用大规模多视角音频-视觉序列数据集进行训练。
• 音频特征提取:使用Wav2Vec 2.0编码器提取通用音频特征并映射到个性化唇部特征。
• 多模态融合:通过交叉注意力层将唇部-表情特征融合到解码器中。
• 3DGS Avatar表示:生成依赖于表情和视图的颜色,并应用皱纹和感知损失以提高照片真实感。
使用教程:
1. 访问GaussianSpeech的GitHub页面,下载必要的代码和数据集。
2. 根据文档说明,设置开发环境并安装所需的依赖库。
3. 使用Wav2Vec 2.0编码器处理输入的语音信号,提取音频特征。
4. 利用Lip Transformer Encoder和Wrinkle Transformer Encoder从音频特征中提取唇部和皱纹特征。
5. 使用Expression Encoder合成FLAME表情,并通过Expression2Latent MLP将这些表情与唇部特征结合。
6. 将结合的特征输入到运动解码器中,预测FLAME顶点偏移。
7. 将预测的顶点偏移添加到模板网格中,生成规范空间中的顶点动画。
8. 在训练过程中,通过优化的3DGS化身和颜色MLP以及高斯潜在变量进一步细化动画,并通过重渲染损失进行优化。
浏览量:2
最新流量情况
月访问量
3446
平均访问时长
00:01:47
每次访问页数
1.32
跳出率
53.60%
流量来源
直接访问
38.63%
自然搜索
41.09%
邮件
0.20%
外链引荐
12.30%
社交媒体
5.95%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
英国
41.22%
美国
58.78%
音频驱动的高保真3D人头化身合成技术
GaussianSpeech是一种新颖的方法,它能够从语音信号中合成高保真度的动画序列,创建逼真、个性化的3D人头化身。该技术通过结合语音信号与3D高斯绘制技术,捕捉人类头部表情和细节动作,包括皮肤皱褶和更细微的面部运动。GaussianSpeech的主要优点包括实时渲染速度、自然的视觉动态效果,以及能够呈现多样化的面部表情和风格。该技术背后是大规模多视角音频-视觉序列数据集的创建,以及音频条件变换模型的开发,这些模型能够直接从音频输入中提取唇部和表情特征。
Stability AI 高保真文本转语音模型
Stability AI 高保真文本转语音模型旨在提供对大规模数据集进行训练的语音合成模型的自然语言引导。它通过标注不同的说话者身份、风格和录音条件来进行自然语言引导。然后将此方法应用于45000小时的数据集,用于训练语音语言模型。此外,该模型提出了提高音频保真度的简单方法,尽管完全依赖于发现的数据,但在很大程度上表现出色。
高性能的文本到语音合成模型
OuteTTS-0.2-500M是基于Qwen-2.5-0.5B构建的文本到语音合成模型,它在更大的数据集上进行了训练,实现了在准确性、自然度、词汇量、声音克隆能力以及多语言支持方面的显著提升。该模型特别感谢Hugging Face提供的GPU资助,支持了模型的训练。
实时AI视频生成开源模型
LTXV是Lightricks推出的一个实时AI视频生成开源模型,它代表了视频生成技术的最新发展。LTXV能够提供可扩展的长视频制作能力,优化了GPU和TPU系统,大幅减少了视频生成时间,同时保持了高视觉质量。LTXV的独特之处在于其帧到帧学习技术,确保了帧之间的连贯性,消除了闪烁和场景内的不一致问题。这一技术对于视频制作行业来说是一个巨大的进步,因为它不仅提高了效率,还提升了视频内容的质量。
AI驱动的视频生成工具,一键生成高质量营销视频
小视频宝(ClipTurbo)是一个AI驱动的视频生成工具,旨在帮助用户轻松创建高质量的营销视频。该工具利用AI技术处理文案、翻译、图标匹配和TTS语音合成,最终使用manim渲染视频,避免了纯生成式AI被平台限流的问题。小视频宝支持多种模板,用户可以根据需要选择分辨率、帧率、宽高比或屏幕方向,模板将自动适配。此外,它还支持多种语音服务,包括内置的EdgeTTS语音。目前,小视频宝仍处于早期开发阶段,仅提供给三花AI的注册用户。
高保真头部混合与色键技术
CHANGER是一个创新的工业级头部混合技术,通过色键技术实现高保真度的头部混合效果,特别适用于视觉效果(VFX)、数字人物创建和虚拟头像等领域。该技术通过分离背景集成和前景混合,利用色键生成无瑕疵的背景,并引入头部形状和长发增强(H^2增强)以及前景预测性注意力转换器(FPAT)模块,以提高对各种真实世界情况的泛化能力。CHANGER的主要优点包括高保真度、工业级结果、以及对真实世界案例的广泛适用性。
使用手机扫描创建逼真可重新照明的头像模型
URAvatar是一种新型的头像生成技术,它能够通过手机扫描在未知光照条件下创建出逼真的、可重新照明的头部头像。与传统的通过逆向渲染估计参数反射率参数的方法不同,URAvatar直接模拟学习辐射传递,将全局光照传输有效地整合到实时渲染中。这项技术的重要性在于它能够从单一环境的手机扫描中重建出在多种环境中看起来都逼真的头部模型,并且能够实时驱动和重新照明。
一个实验性的文本到语音模型
OuteTTS是一个使用纯语言建模方法生成语音的实验性文本到语音模型。它的重要性在于能够通过先进的语言模型技术,将文本转换为自然听起来的语音,这对于语音合成、语音助手和自动配音等领域具有重要意义。该模型由OuteAI开发,提供了Hugging Face模型和GGUF模型的支持,并且可以通过接口进行语音克隆等高级功能。
一款通过纯语言模型实现的文本到语音合成模型
OuteTTS-0.1-350M是一款基于纯语言模型的文本到语音合成技术,它不需要外部适配器或复杂架构,通过精心设计的提示和音频标记实现高质量的语音合成。该模型基于LLaMa架构,使用350M参数,展示了直接使用语言模型进行语音合成的潜力。它通过三个步骤处理音频:使用WavTokenizer进行音频标记化、CTC强制对齐创建精确的单词到音频标记映射、以及遵循特定格式的结构化提示创建。OuteTTS的主要优点包括纯语言建模方法、声音克隆能力、与llama.cpp和GGUF格式的兼容性。
高保真文本引导的音乐生成与编辑模型
MelodyFlow是一个基于文本控制的高保真音乐生成和编辑模型,它使用连续潜在表示序列,避免了离散表示的信息丢失问题。该模型基于扩散变换器架构,经过流匹配目标训练,能够生成和编辑多样化的高质量立体声样本,且具有文本描述的简单性。MelodyFlow还探索了一种新的正则化潜在反转方法,用于零样本测试时的文本引导编辑,并展示了其在多种音乐编辑提示中的优越性能。该模型在客观和主观指标上进行了评估,证明了其在标准文本到音乐基准测试中的质量与效率上与评估基线相当,并且在音乐编辑方面超越了以往的最先进技术。
语音合成工具,提供高质量的语音生成服务
Fish Speech是一款专注于语音合成的产品,它通过使用先进的深度学习技术,能够将文本转换为自然流畅的语音。该产品支持多种语言,包括中文、英文等,适用于需要文本到语音转换的场景,如语音助手、有声读物制作等。Fish Speech以其高质量的语音输出、易用性和灵活性为主要优点,背景信息显示,该产品不断更新,增加了数据集大小,并改进了量化器的参数,以提供更好的服务。
轻量级图片数字人驱动算法,快速定制AI伙伴
MiniMates是一款轻量级的图片数字人驱动算法,能够在普通电脑上实时运行,支持语音驱动和表情驱动两种模式。它比市面上的liveportrait、EchoMimic、MuseTalk等算法快10-100倍,让用户能够通过极少的资源消耗定制自己的AI伙伴。该技术的主要优点包括极速体验、个性化定制以及嵌入终端的能力,摆脱了对Python和CUDA的依赖。MiniMates遵循MIT协议,适用于需要快速、高效的人脸动画和语音合成的应用场景。
高效并行音频生成技术
SoundStorm是由Google Research开发的一种音频生成技术,它通过并行生成音频令牌来大幅减少音频合成的时间。这项技术能够生成高质量、与语音和声学条件一致性高的音频,并且可以与文本到语义模型结合,控制说话内容、说话者声音和说话轮次,实现长文本的语音合成和自然对话的生成。SoundStorm的重要性在于它解决了传统自回归音频生成模型在处理长序列时推理速度慢的问题,提高了音频生成的效率和质量。
基于MaskGCT模型的文本到语音演示
MaskGCT TTS Demo 是一个基于MaskGCT模型的文本到语音(TTS)演示,由Hugging Face平台上的amphion提供。该模型利用深度学习技术,将文本转换为自然流畅的语音,适用于多种语言和场景。MaskGCT模型因其高效的语音合成能力和对多种语言的支持而受到关注。它不仅可以提高语音识别和合成的准确性,还能在不同的应用场景中提供个性化的语音服务。目前,该产品在Hugging Face平台上提供免费试用,具体价格和定位信息需进一步了解。
端到端中英语音对话模型
GLM-4-Voice是由清华大学团队开发的端到端语音模型,能够直接理解和生成中英文语音,进行实时语音对话。它通过先进的语音识别和合成技术,实现了语音到文本再到语音的无缝转换,具备低延迟和高智商的对话能力。该模型在语音模态下的智商和合成表现力上进行了优化,适用于需要实时语音交互的场景。
无需对齐信息的零样本文本到语音转换模型
MaskGCT是一个创新的零样本文本到语音转换(TTS)模型,它通过消除显式对齐信息和音素级持续时间预测的需求,解决了自回归和非自回归系统中存在的问题。MaskGCT采用两阶段模型:第一阶段使用文本预测从语音自监督学习(SSL)模型中提取的语义标记;第二阶段,模型根据这些语义标记预测声学标记。MaskGCT遵循掩码和预测的学习范式,在训练期间学习预测基于给定条件和提示的掩码语义或声学标记。在推理期间,模型以并行方式生成指定长度的标记。实验表明,MaskGCT在质量、相似性和可理解性方面超越了当前最先进的零样本TTS系统。
Genmo 的视频生成模型,具有高保真运动和强提示遵循性。
这是一个先进的视频生成模型,采用 AsymmDiT 架构,可免费试用。它能生成高保真视频,缩小了开源与闭源视频生成系统的差距。模型需要至少 4 个 H100 GPU 运行。
AI动画生成平台
Vmotionize是一个领先的AI动画和3D动画软件,它能够将视频、音乐、文本、图片等内容转换成令人惊叹的3D动画。该平台通过先进的AI动画和动作捕捉工具,使得高质量的3D内容和动态图形更加易于获取。Vmotionize通过创新的方式为独立创作者和全球品牌提供了一个全新的平台,让他们可以共同通过人工智能和人类想象力来实现创意、分享故事和构建虚拟世界。
基于深度学习的高质量文本到语音合成模型
F5-TTS是由SWivid团队开发的一个文本到语音合成(TTS)模型,它利用深度学习技术将文本转换为自然流畅、忠实于原文的语音输出。该模型在生成语音时,不仅追求高自然度,还注重语音的清晰度和准确性,适用于需要高质量语音合成的各种应用场景,如语音助手、有声读物制作、自动新闻播报等。F5-TTS模型在Hugging Face平台上发布,用户可以方便地下载和部署,支持多种语言和声音类型,具有很高的灵活性和可扩展性。
文本驱动的3D头像生成与全身动画表达
DreamWaltz-G是一个创新的框架,用于从文本驱动生成3D头像和表达性的全身动画。它的核心是骨架引导的评分蒸馏和混合3D高斯头像表示。该框架通过整合3D人类模板的骨架控制到2D扩散模型中,提高了视角和人体姿势的一致性,从而生成高质量的头像,解决了多重面孔、额外肢体和模糊等问题。此外,混合3D高斯头像表示通过结合神经隐式场和参数化3D网格,实现了实时渲染、稳定的SDS优化和富有表现力的动画。DreamWaltz-G在生成和动画3D头像方面非常有效,无论是视觉质量还是动画表现力都超越了现有方法。此外,该框架还支持多种应用,包括人类视频重演和多主题场景组合。
快速生成高质量的3D人头模型
GGHead是一种基于3D高斯散射表示的3D生成对抗网络(GAN),用于从2D图像集合中学习3D头部先验。该技术通过利用模板头部网格的UV空间的规则性,预测一组3D高斯属性,从而简化了预测过程。GGHead的主要优点包括高效率、高分辨率生成、全3D一致性,并且能够实现实时渲染。它通过一种新颖的总变差损失来提高生成的3D头部的几何保真度,确保邻近渲染像素来自UV空间中相近的高斯。
使用Llama模型的语音合成工具
Llama 3.2 3b Voice 是基于Hugging Face平台的一款语音合成模型,能够将文本转换为自然流畅的语音。该模型采用了先进的深度学习技术,能够模仿人类说话的语调、节奏和情感,适用于多种场景,如语音助手、有声读物、自动播报等。
集成空间编织注意力,提升扩散模型的高保真条件
HelloMeme是一个集成了空间编织注意力的扩散模型,旨在将高保真和丰富的条件嵌入到图像生成过程中。该技术通过提取驱动视频中的每一帧特征,并将其作为输入到HMControlModule,从而生成视频。通过进一步优化Animatediff模块,提高了生成视频的连续性和保真度。此外,HelloMeme还支持通过ARKit面部混合形状控制生成的面部表情,以及基于SD1.5的Lora或Checkpoint,实现了框架的热插拔适配器,不会影响T2I模型的泛化能力。
微软亚洲研究院开发的语音合成技术
VALL-E 2 是微软亚洲研究院推出的一款语音合成模型,它通过重复感知采样和分组编码建模技术,大幅提升了语音合成的稳健性与自然度。该模型能够将书面文字转化为自然语音,适用于教育、娱乐、多语言交流等多个领域,为提高无障碍性、增强跨语言交流等方面发挥重要作用。
一种用于沉浸式以人为中心的体积视频的鲁棒双高斯表示方法
Robust Dual Gaussian Splatting (DualGS) 是一种新型的基于高斯的体积视频表示方法,它通过优化关节高斯和皮肤高斯来捕捉复杂的人体表演,并实现鲁棒的跟踪和高保真渲染。该技术在SIGGRAPH Asia 2024上展示,能够实现在低端移动设备和VR头显上的实时渲染,提供用户友好和互动的体验。DualGS通过混合压缩策略,实现了高达120倍的压缩比,使得体积视频的存储和传输更加高效。
实时对话式人工智能,一键式API接入。
Deepgram Voice Agent API 是一个统一的语音到语音API,它允许人类和机器之间进行自然听起来的对话。该API由行业领先的语音识别和语音合成模型提供支持,能够自然且实时地听、思考和说话。Deepgram致力于通过其语音代理API推动语音优先AI的未来,通过集成先进的生成AI技术,打造能够进行流畅、类似人类语音代理的业务世界。
从单一角色绘画生成3D动画。
DrawingSpinUp是一个创新的系统,它能够将单一角色绘画转换为3D动画。该技术通过去除视图依赖的轮廓线并重新渲染,以及基于骨架的细化变形算法,解决了业余角色绘画在外观和几何形状上的挑战。它不仅提高了角色绘画的视觉效果,还赋予了绘画以动态的生命力,使其能够自由旋转、跳跃甚至表演街舞。
引领AI视频、音乐、文本创作新潮流
MiniMax模型矩阵是一套集成了多种AI大模型的产品,包括视频生成、音乐生成、文本生成和语音合成等,旨在通过先进的人工智能技术推动内容创作的革新。这些模型不仅能够提供高分辨率和高帧率的视频生成,还能创作各种风格的音乐,生成高质量的文本内容,以及提供超拟人音色的语音合成。MiniMax模型矩阵代表了AI在内容创作领域的前沿技术,具有高效、创新和多样化的特点,能够满足不同用户在创作上的需求。
© 2024 AIbase 备案号:闽ICP备08105208号-14