需求人群:
"该技术主要面向时尚设计师、服装零售商和消费者,能够帮助他们在虚拟环境中预览服装在不同人身上的效果,从而提高设计效率和购物体验。"
使用场景示例:
时尚设计师使用TryOnDiffusion预览新款服装在模特身上的效果
服装零售商利用该技术为客户提供个性化的试穿体验
消费者通过TryOnDiffusion在线试穿服装,做出购买决策
产品特色:
基于扩散架构的服装试穿可视化生成
通过交叉注意力机制隐式变形服装
统一过程中实现服装变形和人物融合,而非两个独立任务
在128×128和256×256分辨率下分别进行图像处理
使用线性层和注意力机制融合人物和服装的姿态嵌入
通过FiLM在所有尺度上调节两个UNets的特征
支持多人试穿同一服装和同一人试穿不同服装的场景
使用教程:
步骤1: 准备一张目标人物的图片和一张服装图片
步骤2: 对人物图片进行分割,创建“服装无关的RGB”图像
步骤3: 对服装图片进行分割,并计算人物和服装的姿态
步骤4: 将处理好的输入数据送入128×128 Parallel-UNet进行初步图像生成
步骤5: 将生成的128x128试穿图像与条件输入一起送入256×256 Parallel-UNet
步骤6: 从256×256 Parallel-UNet获取输出,并进行标准超分辨率扩散处理,生成1024×1024的图像
步骤7: 根据需要调整和优化生成的试穿效果
浏览量:81
最新流量情况
月访问量
3119
平均访问时长
00:00:29
每次访问页数
1.09
跳出率
53.57%
流量来源
直接访问
37.54%
自然搜索
32.49%
邮件
0.05%
外链引荐
12.28%
社交媒体
17.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
印度
14.43%
美国
65.42%
委内瑞拉
20.15%
一款基于扩散模型的服装试穿技术
TryOnDiffusion是一种创新的图像合成技术,它通过两个UNets(Parallel-UNet)的结合,实现了在单一网络中同时保持服装细节和适应显著的身体姿势及形状变化。这项技术在保持服装细节的同时,能够适应不同的身体姿势和形状,解决了以往方法在细节保持和姿势适应上的不足,达到了业界领先的性能。
利用扩散引导逆渲染技术实现逼真物体插入
DiPIR是多伦多AI实验室与NVIDIA Research共同研发的一种基于物理的方法,它通过从单张图片中恢复场景照明,使得虚拟物体能够逼真地插入到室内外场景中。该技术不仅能够优化材质和色调映射,还能自动调整以适应不同的环境,提高图像的真实感。
将任何图像放置于任何场景中
Any Image Anywhere 是一个基于人工智能的图像处理工具,它允许用户通过简单的提示将输入图像放置到不同的上下文中,例如将能量饮料的商标放置在产品照片上。这项技术的重要性在于其能够快速创建逼真的图像合成,对于设计师、营销人员和内容创作者来说,这是一个强大的工具,可以节省大量的时间和资源。产品背景信息显示,它是由fab1an开发的,并且每天有20次的免费使用限制。
基于扩散的混合运动动态角色艺术动画生成工具
MikuDance是一个基于扩散的动画生成管道,它结合了混合运动动态来动画化风格化的角色艺术。该技术通过混合运动建模和混合控制扩散两大关键技术,解决了高动态运动和参考引导错位在角色艺术动画中的挑战。MikuDance通过场景运动跟踪策略显式地在像素级空间中建模动态相机,实现统一的角色场景运动建模。在此基础上,混合控制扩散隐式地对不同角色的尺度和体型进行对齐,允许灵活控制局部角色运动。此外,还加入了运动自适应归一化模块,有效注入全局场景运动,为全面的角色艺术动画铺平了道路。通过广泛的实验,MikuDance在各种角色艺术和运动引导下展示了其有效性和泛化能力,始终如一地产生具有显著运动动态的高质量动画。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
基于文本提示修订图像的大型扩散模型
SeedEdit是Doubao Team推出的大型扩散模型,用于根据任何文本提示修订图像。它通过逐步将图像生成器与强大的图像编辑器对齐,实现了图像重建和图像再生之间的最佳平衡。SeedEdit能够实现高审美/分辨率图像的零样本稳定编辑,并支持图像的连续修订。该技术的重要性在于其能够解决图像编辑问题中成对图像数据稀缺的核心难题,通过将文本到图像(T2I)生成模型视为弱编辑模型,并通过生成带有新提示的新图像来实现“编辑”,然后将其蒸馏并与之对齐到图像条件编辑模型中。
盲图像恢复技术,利用即时生成参考图像恢复破损图像
InstantIR是一种基于扩散模型的盲图像恢复方法,能够在测试时处理未知退化问题,提高模型的泛化能力。该技术通过动态调整生成条件,在推理过程中生成参考图像,从而提供稳健的生成条件。InstantIR的主要优点包括:能够恢复极端退化的图像细节,提供逼真的纹理,并且通过文本描述调节生成参考,实现创造性的图像恢复。该技术由北京大学、InstantX团队和香港中文大学的研究人员共同开发,得到了HuggingFace和fal.ai的赞助支持。
根据人类指令修复和编辑照片的框架
PromptFix是一个综合框架,能够使扩散模型遵循人类指令执行各种图像处理任务。该框架通过构建大规模的指令遵循数据集,提出了高频引导采样方法来控制去噪过程,并设计了辅助提示适配器,利用视觉语言模型增强文本提示,提高模型的任务泛化能力。PromptFix在多种图像处理任务中表现优于先前的方法,并在盲恢复和组合任务中展现出优越的零样本能力。
大规模视频生成的自回归扩散模型
MarDini是Meta AI Research推出的一款视频扩散模型,它将掩码自回归(MAR)的优势整合到统一的扩散模型(DM)框架中。该模型能够根据任意数量的掩码帧在任意帧位置进行视频生成,支持视频插值、图像到视频生成以及视频扩展等多种视频生成任务。MarDini的设计高效,将大部分计算资源分配给低分辨率规划模型,使得在大规模上进行空间-时间注意力成为可能。MarDini在视频插值方面树立了新的标杆,并且在几次推理步骤内,就能高效生成与更昂贵的高级图像到视频模型相媲美的视频。
视频扩散模型加速工具,无需训练即可生成高质量视频内容。
FasterCache是一种创新的无需训练的策略,旨在加速视频扩散模型的推理过程,并生成高质量的视频内容。这一技术的重要性在于它能够显著提高视频生成的效率,同时保持或提升内容的质量,这对于需要快速生成视频内容的行业来说是非常有价值的。FasterCache由来自香港大学、南洋理工大学和上海人工智能实验室的研究人员共同开发,项目页面提供了更多的视觉结果和详细信息。产品目前免费提供,主要面向视频内容生成、AI研究和开发等领域。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
高性能的文本到图像生成模型
Stable Diffusion 3.5 Large 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,由 Stability AI 开发。该模型在图像质量、排版、复杂提示理解和资源效率方面都有显著提升。它使用三个固定的预训练文本编码器,并通过 QK 归一化技术提高训练稳定性。此外,该模型在训练数据和策略上使用了包括合成数据和过滤后的公开可用数据。Stable Diffusion 3.5 Large 模型在遵守社区许可协议的前提下,可以免费用于研究、非商业用途,以及年收入少于100万美元的组织或个人的商业用途。
全能的创造者和编辑器,通过扩散变换遵循指令
ACE是一个基于扩散变换的全能创造者和编辑器,它能够通过统一的条件格式Long-context Condition Unit (LCU)输入,实现多种视觉生成任务的联合训练。ACE通过高效的数据收集方法解决了训练数据缺乏的问题,并通过多模态大型语言模型生成准确的文本指令。ACE在视觉生成领域具有显著的性能优势,可以轻松构建响应任何图像创建请求的聊天系统,避免了视觉代理通常采用的繁琐流程。
逆向绘画技术,重现绘画过程
Inverse Painting 是一种基于扩散模型的方法,能够从一幅目标画作生成绘画过程的时间流逝视频。该技术通过训练学习真实艺术家的绘画过程,能够处理多种艺术风格,并生成类似人类艺术家的绘画过程视频。它结合了文本和区域理解,定义了一组绘画指令,并使用新颖的扩散基础渲染器更新画布。该技术不仅能够处理训练中有限的丙烯画风格,还能为广泛的艺术风格和流派提供合理的结果。
集成空间编织注意力,提升扩散模型的高保真条件
HelloMeme是一个集成了空间编织注意力的扩散模型,旨在将高保真和丰富的条件嵌入到图像生成过程中。该技术通过提取驱动视频中的每一帧特征,并将其作为输入到HMControlModule,从而生成视频。通过进一步优化Animatediff模块,提高了生成视频的连续性和保真度。此外,HelloMeme还支持通过ARKit面部混合形状控制生成的面部表情,以及基于SD1.5的Lora或Checkpoint,实现了框架的热插拔适配器,不会影响T2I模型的泛化能力。
无需训练即可定制化生成个性化人像图像
MagicFace是一种无需训练即可实现个性化人像合成的技术,它能够根据给定的多个概念生成高保真度的人像图像。这项技术通过精确地将参考概念特征在像素级别集成到生成区域中,实现了多概念的个性化定制。MagicFace引入了粗到细的生成流程,包括语义布局构建和概念特征注入两个阶段,通过Reference-aware Self-Attention (RSA)和Region-grouped Blend Attention (RBA)机制实现。该技术不仅在人像合成和多概念人像定制方面表现出色,还可用于纹理转移,增强其多功能性和实用性。
使用扩散模型进行图像外延
Diffusers Image Outpaint 是一个基于扩散模型的图像外延技术,它能够根据已有的图像内容,生成图像的额外部分。这项技术在图像编辑、游戏开发、虚拟现实等领域具有广泛的应用前景。它通过先进的机器学习算法,使得图像生成更加自然和逼真,为用户提供了一种创新的图像处理方式。
提升基于拖拽的图像编辑的交互性和速度
InstantDrag是一个优化自由的流程,它通过仅使用图像和拖拽指令作为输入,增强了交互性和速度。该技术由两个精心设计的网络组成:拖拽条件的光流生成器(FlowGen)和光流条件的扩散模型(FlowDiffusion)。InstantDrag通过将任务分解为运动生成和运动条件图像生成,学习了基于真实世界视频数据集的拖拽图像编辑的运动动态。它能够在不需要掩码或文本提示的情况下,快速执行逼真的编辑,这使得它成为交互式、实时应用的有前景的解决方案。
统一的图像生成框架,简化多任务图像生成。
OmniGen是一个创新的扩散框架,它将多种图像生成任务统一到单一模型中,无需特定任务的网络或微调。这一技术简化了图像生成流程,提高了效率,降低了开发和维护成本。
用于精确控制扩散模型中概念的低秩适配器
Concept Sliders 是一种用于精确控制扩散模型中概念的技术,它通过低秩适配器(LoRA)在预训练模型之上进行应用,允许艺术家和用户通过简单的文本描述或图像对来训练控制特定属性的方向。这种技术的主要优点是能够在不改变图像整体结构的情况下,对生成的图像进行细微调整,如眼睛大小、光线等,从而实现更精细的控制。它为艺术家提供了一种新的创作表达方式,同时解决了生成模糊或扭曲图像的问题。
利用预训练的图像到视频扩散模型生成连贯中间帧
该产品是一个图像到视频的扩散模型,通过轻量级的微调技术,能够从一对关键帧生成具有连贯运动的连续视频序列。这种方法特别适用于需要在两个静态图像之间生成平滑过渡动画的场景,如动画制作、视频编辑等。它利用了大规模图像到视频扩散模型的强大能力,通过微调使其能够预测两个关键帧之间的视频,从而实现前向和后向的一致性。
高分辨率视频外延与内容生成技术
Follow-Your-Canvas 是一种基于扩散模型的视频外延技术,它能够生成高分辨率的视频内容。该技术通过分布式处理和空间窗口合并,解决了GPU内存限制问题,同时保持了视频的空间和时间一致性。它在大规模视频外延方面表现出色,能够将视频分辨率显著提升,如从512 X 512扩展到1152 X 2048,同时生成高质量和视觉上令人愉悦的结果。
神经模型驱动的实时游戏引擎
GameNGen是一个完全由神经模型驱动的游戏引擎,能够实现与复杂环境的实时互动,并在长时间轨迹上保持高质量。它能够以每秒超过20帧的速度交互式模拟经典游戏《DOOM》,并且其下一帧预测的PSNR达到29.4,与有损JPEG压缩相当。人类评估者在区分游戏片段和模拟片段方面仅略优于随机机会。GameNGen通过两个阶段的训练:(1)一个RL-agent学习玩游戏并记录训练会话的动作和观察结果,成为生成模型的训练数据;(2)一个扩散模型被训练来预测下一帧,条件是过去的动作和观察序列。条件增强允许在长时间轨迹上稳定自回归生成。
高效训练高质量文本到图像扩散模型
ml-mdm是一个Python包,用于高效训练高质量的文本到图像扩散模型。该模型利用Matryoshka扩散模型技术,能够在1024x1024像素的分辨率上训练单一像素空间模型,展现出强大的零样本泛化能力。
3D纹理生成技术,根据文本描述合成3D纹理
TexGen是一个创新的多视角采样和重采样框架,用于根据任意文本描述合成3D纹理。它利用预训练的文本到图像的扩散模型,通过一致性视图采样和注意力引导的多视角采样策略,以及噪声重采样技术,显著提高了3D对象的纹理质量,具有高度的视角一致性和丰富的外观细节。
一款简单高效的虚拟试穿扩散模型。
CatVTON是一款基于扩散模型的虚拟试穿技术,具有轻量级网络(总共899.06M参数)、参数高效训练(49.57M可训练参数)和简化推理(1024X768分辨率下<8G VRAM)。它通过简化的网络结构和推理过程,实现了快速且高效的虚拟试穿效果,特别适合时尚行业和个性化推荐场景。
大规模参数扩散变换器模型
DiT-MoE是一个使用PyTorch实现的扩散变换器模型,能够扩展到160亿参数,与密集网络竞争的同时展现出高度优化的推理能力。它代表了深度学习领域在处理大规模数据集时的前沿技术,具有重要的研究和应用价值。
© 2024 AIbase 备案号:闽ICP备08105208号-14