需求人群:
"该技术主要面向时尚设计师、服装零售商和消费者,能够帮助他们在虚拟环境中预览服装在不同人身上的效果,从而提高设计效率和购物体验。"
使用场景示例:
时尚设计师使用TryOnDiffusion预览新款服装在模特身上的效果
服装零售商利用该技术为客户提供个性化的试穿体验
消费者通过TryOnDiffusion在线试穿服装,做出购买决策
产品特色:
基于扩散架构的服装试穿可视化生成
通过交叉注意力机制隐式变形服装
统一过程中实现服装变形和人物融合,而非两个独立任务
在128×128和256×256分辨率下分别进行图像处理
使用线性层和注意力机制融合人物和服装的姿态嵌入
通过FiLM在所有尺度上调节两个UNets的特征
支持多人试穿同一服装和同一人试穿不同服装的场景
使用教程:
步骤1: 准备一张目标人物的图片和一张服装图片
步骤2: 对人物图片进行分割,创建“服装无关的RGB”图像
步骤3: 对服装图片进行分割,并计算人物和服装的姿态
步骤4: 将处理好的输入数据送入128×128 Parallel-UNet进行初步图像生成
步骤5: 将生成的128x128试穿图像与条件输入一起送入256×256 Parallel-UNet
步骤6: 从256×256 Parallel-UNet获取输出,并进行标准超分辨率扩散处理,生成1024×1024的图像
步骤7: 根据需要调整和优化生成的试穿效果
浏览量:108
最新流量情况
月访问量
143
平均访问时长
00:00:00
每次访问页数
1.01
跳出率
44.38%
流量来源
直接访问
47.55%
自然搜索
27.36%
邮件
0.05%
外链引荐
17.77%
社交媒体
6.65%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
美国
100.00%
一款基于扩散模型的服装试穿技术
TryOnDiffusion是一种创新的图像合成技术,它通过两个UNets(Parallel-UNet)的结合,实现了在单一网络中同时保持服装细节和适应显著的身体姿势及形状变化。这项技术在保持服装细节的同时,能够适应不同的身体姿势和形状,解决了以往方法在细节保持和姿势适应上的不足,达到了业界领先的性能。
基于扩散模型的高保真服装重建虚拟试穿技术
TryOffDiff是一种基于扩散模型的高保真服装重建技术,用于从穿着个体的单张照片中生成标准化的服装图像。这项技术与传统的虚拟试穿不同,它旨在提取规范的服装图像,这在捕捉服装形状、纹理和复杂图案方面提出了独特的挑战。TryOffDiff通过使用Stable Diffusion和基于SigLIP的视觉条件来确保高保真度和细节保留。该技术在VITON-HD数据集上的实验表明,其方法优于基于姿态转移和虚拟试穿的基线方法,并且需要较少的预处理和后处理步骤。TryOffDiff不仅能够提升电子商务产品图像的质量,还能推进生成模型的评估,并激发未来在高保真重建方面的工作。
虚拟试穿产品图像修复模型
Diffuse to Choose 是一种基于扩散的图像修复模型,主要用于虚拟试穿场景。它能够在修复图像时保留参考物品的细节,并且能够进行准确的语义操作。通过将参考图像的细节特征直接融入主要扩散模型的潜在特征图中,并结合感知损失来进一步保留参考物品的细节,该模型在快速推理和高保真细节方面取得了良好的平衡。
AnyDressing 是一种基于潜在扩散模型的可定制多服装虚拟试穿技术。
AnyDressing 是一种创新的虚拟试穿技术,通过潜在扩散模型实现多服装的个性化定制。该技术能够根据用户提供的服装组合和个性化文本提示生成逼真的虚拟试穿图像。其主要优点包括高精度的服装纹理细节处理、与多种插件的兼容性以及强大的场景适应能力。AnyDressing 的背景信息显示,它是由字节跳动和清华大学的研究团队共同开发的,旨在推动虚拟试穿技术的发展。该产品目前处于研究阶段,尚未定价,主要面向学术研究和效果展示。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
多功能大规模扩散模型,支持双向图像合成与理解。
OneDiffusion是一个多功能、大规模的扩散模型,它能够无缝支持双向图像合成和理解,覆盖多种任务。该模型预计将在12月初发布代码和检查点。OneDiffusion的重要性在于其能够处理图像合成和理解任务,这在人工智能领域是一个重要的进步,尤其是在图像生成和识别方面。产品背景信息显示,这是一个由多位研究人员共同开发的项目,其研究成果已在arXiv上发表。
基于LDM的服装驱动图像合成AI
MagicClothing是一种基于潜在扩散模型(LDM)的新型网络架构,专门用于服装驱动的图像合成任务。它能够根据文本提示生成穿着特定服装的定制化角色图像,同时确保服装细节的保留和对文本提示的忠实呈现。该系统通过服装特征提取器和自注意力融合技术,实现了高度的图像可控性,并且可以与ControlNet和IP-Adapter等其他技术结合使用,以提升角色的多样性和可控性。此外,还开发了匹配点LPIPS(MP-LPIPS)评估指标,用于评价生成图像与原始服装的一致性。
多件服装虚拟试穿和编辑技术
M&M VTO是一种混合搭配的虚拟试穿方法,它接受多张服装图片、服装布局的文本描述以及一个人的图片作为输入,输出是这些服装在指定布局下穿在给定人物身上的可视化效果。该技术的主要优点包括:单阶段扩散模型,无需超分辨率级联,能够在1024x512分辨率下混合搭配多件服装,同时保留和扭曲复杂的服装细节;架构设计(VTO UNet Diffusion Transformer)能够分离去噪和人物特定特征,实现高效的身份保留微调策略;通过文本输入控制多件服装的布局,专门针对虚拟试穿任务微调。M&M VTO在定性和定量方面都达到了最先进的性能,并为通过语言引导和多件服装试穿开辟了新的可能性。
一款简单高效的虚拟试穿扩散模型。
CatVTON是一款基于扩散模型的虚拟试穿技术,具有轻量级网络(总共899.06M参数)、参数高效训练(49.57M可训练参数)和简化推理(1024X768分辨率下<8G VRAM)。它通过简化的网络结构和推理过程,实现了快速且高效的虚拟试穿效果,特别适合时尚行业和个性化推荐场景。
一种用于虚拟试穿任务的扩散模型,特别在真实世界场景中提高图像保真度和细节保存。
IDM-VTON是一种新型的扩散模型,用于基于图像的虚拟试穿任务,它通过结合视觉编码器和UNet网络的高级语义以及低级特征,生成具有高度真实感和细节的虚拟试穿图像。该技术通过提供详细的文本提示,增强了生成图像的真实性,并通过定制方法进一步提升了真实世界场景下的保真度和真实感。
基于图像扩散模型的得分蒸馏采样方法
Score Distillation Sampling(SDS)是一种新近但已经广泛流行的方法,依赖于图像扩散模型来控制使用文本提示的优化问题。该论文对SDS损失函数进行了深入分析,确定了其制定中的固有问题,并提出了一个出人意料但有效的修复方法。具体而言,我们将损失分解为不同因素,并分离出产生噪声梯度的组件。在原始制定中,使用高文本指导来账户噪声,导致了不良副作用。相反,我们训练了一个浅层网络,模拟图像扩散模型的时间步相关去噪不足,以有效地将其分解出来。我们通过多个定性和定量实验(包括基于优化的图像合成和编辑、零样本图像转换网络训练、以及文本到3D合成)展示了我们新颖损失制定的多功能性和有效性。
AI试衣镜,上传照片和服装图像,AI即刻呈现试穿效果。
Digimirror是一款利用AI技术实现虚拟试衣的工具,可帮助在线购物者和企业快速预览服装效果,减少退货率。其主要优点包括免费试用、AI分析准确、可一键更换服装,定位于提升在线购物体验。
视频虚拟试穿技术
ViViD是一个利用扩散模型进行视频虚拟试穿的新框架。它通过设计服装编码器提取精细的服装语义特征,并引入轻量级姿态编码器以确保时空一致性,生成逼真的视频试穿效果。ViViD收集了迄今为止规模最大、服装类型最多样化、分辨率最高的视频虚拟试穿数据集。
无需更换,即可虚拟试穿各种服装。
Kolors 虚拟试穿 AI 是一款利用人工智能技术,通过用户上传的照片来虚拟试穿服装的在线平台。它通过先进的计算机视觉算法和生成对抗网络(GANs)技术,为用户提供逼真的服装试穿效果。该产品不仅改变了传统的试衣体验,还为时尚博主、服装零售商、个人造型师等提供了创新的内容创作和展示方式。它的优势在于能够提供即时的试穿效果,多样化的服装选择,以及真实感的渲染效果,同时保护用户隐私,支持个性化的服装试穿体验。
动态视角合成的扩散先验模型
本论文提出了一种基于扩散先验的动态视角合成方法,用于从单目视频中生成动态场景的新视角。该方法通过对视频帧进行微调和知识蒸馏,实现了几何一致性和场景一致性。论文通过定性和定量实验评估了方法的有效性和鲁棒性,证明了该方法在复杂场景下的优势。
可控人物图像生成模型
Leffa是一个用于可控人物图像生成的统一框架,它能够精确控制人物的外观(例如虚拟试穿)和姿态(例如姿态转移)。该模型通过在训练期间引导目标查询关注参考图像中的相应区域,减少细节扭曲,同时保持高图像质量。Leffa的主要优点包括模型无关性,可以用于提升其他扩散模型的性能。
虚拟试穿应用,通过WhatsApp发送图片试穿服装
这是一个使用Flask、Twilio的WhatsApp API和Gradio的虚拟试穿模型构建的虚拟试穿原型应用。用户可以通过WhatsApp发送图片来虚拟试穿服装,并将结果发送回用户。该应用利用了Twilio Sandbox进行WhatsApp消息的发送和接收,以及Gradio API来处理虚拟试穿模型,为用户提供了一个创新的在线购物体验。
使用扩散模型进行图像外延
Diffusers Image Outpaint 是一个基于扩散模型的图像外延技术,它能够根据已有的图像内容,生成图像的额外部分。这项技术在图像编辑、游戏开发、虚拟现实等领域具有广泛的应用前景。它通过先进的机器学习算法,使得图像生成更加自然和逼真,为用户提供了一种创新的图像处理方式。
使用扩散模型实现时域一致的人体图像动画
MagicAnimate是一款基于扩散模型的先进框架,用于人体图像动画。它能够从单张图像和动态视频生成动画视频,具有时域一致性,能够保持参考图像的特征,并显著提升动画的保真度。MagicAnimate支持使用来自各种来源的动作序列进行图像动画,包括跨身份的动画和未见过的领域,如油画和电影角色。它还与DALLE3等T2I扩散模型无缝集成,可以根据文本生成的图像赋予动态动作。MagicAnimate由新加坡国立大学Show Lab和Bytedance字节跳动共同开发。
快速生成高质量图像的扩散模型
Flash Diffusion 是一种高效的图像生成模型,通过少步骤生成高质量的图像,适用于多种图像处理任务,如文本到图像、修复、超分辨率等。该模型在 COCO2014 和 COCO2017 数据集上达到了最先进的性能,同时训练时间少,参数数量少。
免费在线AI服装试穿体验
Kolors Virtual Try On是一个利用先进AI技术提供在线虚拟试衣服务的平台。它通过虚拟建模帮助用户在真实环境中可视化服装产品,减少因尺码不合或款式不满意导致的退换货成本。用户可以随时随地试穿服装,做出更明智的购物选择。该平台兼容多个平台,提供个性化推荐,并且支持移动设备使用。Kolors Virtual Try On的隐私政策确保用户数据安全,所有上传的照片在处理后会被安全删除。
基于文本提示修订图像的大型扩散模型
SeedEdit是Doubao Team推出的大型扩散模型,用于根据任何文本提示修订图像。它通过逐步将图像生成器与强大的图像编辑器对齐,实现了图像重建和图像再生之间的最佳平衡。SeedEdit能够实现高审美/分辨率图像的零样本稳定编辑,并支持图像的连续修订。该技术的重要性在于其能够解决图像编辑问题中成对图像数据稀缺的核心难题,通过将文本到图像(T2I)生成模型视为弱编辑模型,并通过生成带有新提示的新图像来实现“编辑”,然后将其蒸馏并与之对齐到图像条件编辑模型中。
OFT可有效稳定微调文本到图像扩散模型
Controlling Text-to-Image Diffusion研究了如何有效引导或控制强大的文本到图像生成模型进行各种下游任务。提出了正交微调(OFT)方法,可以保持模型的生成能力。OFT可以保持神经元之间的超球面能量不变,防止模型坍塌。作者考虑了两种重要的微调任务:主体驱动生成和可控生成。结果表明,OFT方法在生成质量和收敛速度上优于现有方法。
基于条件扩散模型的人类-物体交互合成技术
Controllable Human-Object Interaction Synthesis (CHOIS) 是一种先进的技术,它能够根据语言描述、初始物体和人类状态以及稀疏物体路径点来同时生成物体运动和人类运动。这项技术对于模拟真实的人类行为至关重要,尤其在需要精确手-物体接触和由地面支撑的适当接触的场景中。CHOIS通过引入物体几何损失作为额外的监督信息,以及在训练扩散模型的采样过程中设计指导项来强制执行接触约束,从而提高了生成物体运动与输入物体路径点之间的匹配度,并确保了交互的真实性。
超高质量虚拟试穿,适用于任何服装和人物
Outfit Anyone 是一款超高质量虚拟试穿产品,使用户能够在不真实试穿衣物的情况下尝试不同的时尚款式。通过采用两个流的条件扩散模型,Outfit Anyone 能够灵活处理衣物变形,生成更逼真的效果。它具备可扩展性,可以调整姿势和身体形状等因素,适用于动漫角色到真实人物的图像。Outfit Anyone 在各种场景下的表现突出了其实用性和准备好投入实际应用的程度。
视频生成的时空扩散模型
Lumiere是一个文本到视频扩散模型,旨在合成展现真实、多样和连贯运动的视频,解决视频合成中的关键挑战。我们引入了一种空时U-Net架构,可以一次性生成整个视频的时间持续,通过模型的单次传递。这与现有的视频模型形成对比,后者合成远距离的关键帧,然后进行时间超分辨率处理,这种方法本质上使得全局时间一致性难以实现。通过部署空间和(重要的是)时间的下采样和上采样,并利用预训练的文本到图像扩散模型,我们的模型学会直接生成多个时空尺度下的全帧率、低分辨率视频。我们展示了最先进的文本到视频生成结果,并展示了我们的设计轻松促进了各种内容创作任务和视频编辑应用,包括图像到视频、视频修补和风格化生成。
AI服装搭配生成器,上传照片即可试穿数不尽时尚服装。
OutfitAI是一款AI服装搭配生成器,利用虚拟试衣技术帮助用户快速浏览各种时尚服装,适用于时尚购物。该产品的主要优点在于提供虚拟试穿功能,节省购物时间并帮助用户发现新款式。定位于时尚爱好者和购物者。
© 2025 AIbase 备案号:闽ICP备08105208号-14