需求人群:
"Diffuse to Choose 适用于在线购物等虚拟试穿场景中的图像修复任务。"
使用场景示例:
在虚拟试穿应用中修复图像
为产品图像添加缺失的细节
进行图像的语义操作
产品特色:
虚拟试穿图像修复
高保真细节保留
准确的语义操作
浏览量:500
最新流量情况
月访问量
273
平均访问时长
00:00:00
每次访问页数
1.01
跳出率
45.47%
流量来源
直接访问
83.38%
自然搜索
10.13%
邮件
0.04%
外链引荐
3.42%
社交媒体
2.64%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
印度
18.40%
日本
71.52%
美国
10.08%
虚拟试穿产品图像修复模型
Diffuse to Choose 是一种基于扩散的图像修复模型,主要用于虚拟试穿场景。它能够在修复图像时保留参考物品的细节,并且能够进行准确的语义操作。通过将参考图像的细节特征直接融入主要扩散模型的潜在特征图中,并结合感知损失来进一步保留参考物品的细节,该模型在快速推理和高保真细节方面取得了良好的平衡。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
一款简单高效的虚拟试穿扩散模型。
CatVTON是一款基于扩散模型的虚拟试穿技术,具有轻量级网络(总共899.06M参数)、参数高效训练(49.57M可训练参数)和简化推理(1024X768分辨率下<8G VRAM)。它通过简化的网络结构和推理过程,实现了快速且高效的虚拟试穿效果,特别适合时尚行业和个性化推荐场景。
一种用于虚拟试穿任务的扩散模型,特别在真实世界场景中提高图像保真度和细节保存。
IDM-VTON是一种新型的扩散模型,用于基于图像的虚拟试穿任务,它通过结合视觉编码器和UNet网络的高级语义以及低级特征,生成具有高度真实感和细节的虚拟试穿图像。该技术通过提供详细的文本提示,增强了生成图像的真实性,并通过定制方法进一步提升了真实世界场景下的保真度和真实感。
基于自然语言输入的图像修复算法
Inst-Inpaint是一种图像修复算法,可以根据自然语言输入估计要删除的对象并同时删除它。该产品提供了一个名为GQA-Inpaint的数据集,以及一种名为Inst-Inpaint的新型修复框架,可以根据文本提示从图像中删除对象。该产品提供了各种GAN和扩散基线,并在合成和真实图像数据集上运行实验。该产品提供了不同的评估指标,以衡量模型的质量和准确性,并显示出显著的定量和定性改进。
基于扩散的混合运动动态角色艺术动画生成工具
MikuDance是一个基于扩散的动画生成管道,它结合了混合运动动态来动画化风格化的角色艺术。该技术通过混合运动建模和混合控制扩散两大关键技术,解决了高动态运动和参考引导错位在角色艺术动画中的挑战。MikuDance通过场景运动跟踪策略显式地在像素级空间中建模动态相机,实现统一的角色场景运动建模。在此基础上,混合控制扩散隐式地对不同角色的尺度和体型进行对齐,允许灵活控制局部角色运动。此外,还加入了运动自适应归一化模块,有效注入全局场景运动,为全面的角色艺术动画铺平了道路。通过广泛的实验,MikuDance在各种角色艺术和运动引导下展示了其有效性和泛化能力,始终如一地产生具有显著运动动态的高质量动画。
基于文本提示修订图像的大型扩散模型
SeedEdit是Doubao Team推出的大型扩散模型,用于根据任何文本提示修订图像。它通过逐步将图像生成器与强大的图像编辑器对齐,实现了图像重建和图像再生之间的最佳平衡。SeedEdit能够实现高审美/分辨率图像的零样本稳定编辑,并支持图像的连续修订。该技术的重要性在于其能够解决图像编辑问题中成对图像数据稀缺的核心难题,通过将文本到图像(T2I)生成模型视为弱编辑模型,并通过生成带有新提示的新图像来实现“编辑”,然后将其蒸馏并与之对齐到图像条件编辑模型中。
盲图像恢复技术,利用即时生成参考图像恢复破损图像
InstantIR是一种基于扩散模型的盲图像恢复方法,能够在测试时处理未知退化问题,提高模型的泛化能力。该技术通过动态调整生成条件,在推理过程中生成参考图像,从而提供稳健的生成条件。InstantIR的主要优点包括:能够恢复极端退化的图像细节,提供逼真的纹理,并且通过文本描述调节生成参考,实现创造性的图像恢复。该技术由北京大学、InstantX团队和香港中文大学的研究人员共同开发,得到了HuggingFace和fal.ai的赞助支持。
根据人类指令修复和编辑照片的框架
PromptFix是一个综合框架,能够使扩散模型遵循人类指令执行各种图像处理任务。该框架通过构建大规模的指令遵循数据集,提出了高频引导采样方法来控制去噪过程,并设计了辅助提示适配器,利用视觉语言模型增强文本提示,提高模型的任务泛化能力。PromptFix在多种图像处理任务中表现优于先前的方法,并在盲恢复和组合任务中展现出优越的零样本能力。
高容量真实世界图像修复与隐私安全数据管理
DreamClear是一个专注于高容量真实世界图像修复的深度学习模型,它通过隐私安全的数据管理技术,提供了一种高效的图像超分辨率和修复解决方案。该模型在NeurIPS 2024上被提出,主要优点包括高容量处理能力、隐私保护以及实际应用中的高效性。DreamClear的背景信息显示,它是基于先前工作的改进,并且提供了多种预训练模型和代码,以便于研究者和开发者使用。产品是免费的,定位于科研和工业界的图像处理需求。
大规模视频生成的自回归扩散模型
MarDini是Meta AI Research推出的一款视频扩散模型,它将掩码自回归(MAR)的优势整合到统一的扩散模型(DM)框架中。该模型能够根据任意数量的掩码帧在任意帧位置进行视频生成,支持视频插值、图像到视频生成以及视频扩展等多种视频生成任务。MarDini的设计高效,将大部分计算资源分配给低分辨率规划模型,使得在大规模上进行空间-时间注意力成为可能。MarDini在视频插值方面树立了新的标杆,并且在几次推理步骤内,就能高效生成与更昂贵的高级图像到视频模型相媲美的视频。
视频扩散模型加速工具,无需训练即可生成高质量视频内容。
FasterCache是一种创新的无需训练的策略,旨在加速视频扩散模型的推理过程,并生成高质量的视频内容。这一技术的重要性在于它能够显著提高视频生成的效率,同时保持或提升内容的质量,这对于需要快速生成视频内容的行业来说是非常有价值的。FasterCache由来自香港大学、南洋理工大学和上海人工智能实验室的研究人员共同开发,项目页面提供了更多的视觉结果和详细信息。产品目前免费提供,主要面向视频内容生成、AI研究和开发等领域。
无限创意画板,集成领先AI图像编辑技术
Ideogram Canvas是一个为组织、生成、编辑和组合图像而设计的无限创意画板。它支持上传自有图像或在画板内生成新图像,并使用行业领先的Magic Fill(图像修复)和Extend(图像扩展)工具进行无缝编辑、扩展或组合。该产品特别适合图形设计,提供高级文本渲染和精确的提示遵循,通过灵活、迭代的过程将您的创意变为现实。Ideogram Canvas的背景信息显示,它是基于AI的创新界面,旨在通过AI的魔力增强您的迭代创意过程。无论您是经验丰富的设计师还是刚开始设计之旅,我们的灵活平台都能让您以惊人的速度和精度将愿景变为现实,扩展创意自由的边界。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
高性能的文本到图像生成模型
Stable Diffusion 3.5 Large 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,由 Stability AI 开发。该模型在图像质量、排版、复杂提示理解和资源效率方面都有显著提升。它使用三个固定的预训练文本编码器,并通过 QK 归一化技术提高训练稳定性。此外,该模型在训练数据和策略上使用了包括合成数据和过滤后的公开可用数据。Stable Diffusion 3.5 Large 模型在遵守社区许可协议的前提下,可以免费用于研究、非商业用途,以及年收入少于100万美元的组织或个人的商业用途。
虚拟试穿应用,通过WhatsApp发送图片试穿服装
这是一个使用Flask、Twilio的WhatsApp API和Gradio的虚拟试穿模型构建的虚拟试穿原型应用。用户可以通过WhatsApp发送图片来虚拟试穿服装,并将结果发送回用户。该应用利用了Twilio Sandbox进行WhatsApp消息的发送和接收,以及Gradio API来处理虚拟试穿模型,为用户提供了一个创新的在线购物体验。
利用AI技术,提供个性化购物体验和产品推荐
Google Shopping是一个利用人工智能技术,帮助用户在超过45亿的产品列表中找到相关产品、发现个性化选项并找到最低价的在线购物平台。它通过AI生成的简报,为用户提供购物研究的智能展示,简化了用户的购物研究过程。此外,它还包括虚拟试穿功能、AR购物工具等,帮助用户更有信心地购物。Google Shopping的个性化主页还会根据用户的偏好,提供可购物的产品和视频,使用户能够根据自己的喜好进行购物。
免费在线AI服装试穿体验
Kolors Virtual Try On是一个利用先进AI技术提供在线虚拟试衣服务的平台。它通过虚拟建模帮助用户在真实环境中可视化服装产品,减少因尺码不合或款式不满意导致的退换货成本。用户可以随时随地试穿服装,做出更明智的购物选择。该平台兼容多个平台,提供个性化推荐,并且支持移动设备使用。Kolors Virtual Try On的隐私政策确保用户数据安全,所有上传的照片在处理后会被安全删除。
阿里妈妈创意团队开发的图像修复模型
FLUX.1-dev-Controlnet-Inpainting-Beta是由阿里妈妈创意团队开发的一个图像修复模型,该模型在图像修复领域具有显著的改进,支持1024x1024分辨率的直接处理和生成,无需额外的放大步骤,提供更高质量和更详细的输出结果。模型经过微调,能够捕捉和再现修复区域的更多细节,并通过增强的提示解释提供对生成内容的更精确控制。
全能的创造者和编辑器,通过扩散变换遵循指令
ACE是一个基于扩散变换的全能创造者和编辑器,它能够通过统一的条件格式Long-context Condition Unit (LCU)输入,实现多种视觉生成任务的联合训练。ACE通过高效的数据收集方法解决了训练数据缺乏的问题,并通过多模态大型语言模型生成准确的文本指令。ACE在视觉生成领域具有显著的性能优势,可以轻松构建响应任何图像创建请求的聊天系统,避免了视觉代理通常采用的繁琐流程。
逆向绘画技术,重现绘画过程
Inverse Painting 是一种基于扩散模型的方法,能够从一幅目标画作生成绘画过程的时间流逝视频。该技术通过训练学习真实艺术家的绘画过程,能够处理多种艺术风格,并生成类似人类艺术家的绘画过程视频。它结合了文本和区域理解,定义了一组绘画指令,并使用新颖的扩散基础渲染器更新画布。该技术不仅能够处理训练中有限的丙烯画风格,还能为广泛的艺术风格和流派提供合理的结果。
集成空间编织注意力,提升扩散模型的高保真条件
HelloMeme是一个集成了空间编织注意力的扩散模型,旨在将高保真和丰富的条件嵌入到图像生成过程中。该技术通过提取驱动视频中的每一帧特征,并将其作为输入到HMControlModule,从而生成视频。通过进一步优化Animatediff模块,提高了生成视频的连续性和保真度。此外,HelloMeme还支持通过ARKit面部混合形状控制生成的面部表情,以及基于SD1.5的Lora或Checkpoint,实现了框架的热插拔适配器,不会影响T2I模型的泛化能力。
2D肖像视频转4D高斯场编辑工具
PortraitGen是一个基于多模态生成先验的2D肖像视频编辑工具,能够将2D肖像视频提升到4D高斯场,实现多模态肖像编辑。该技术通过追踪SMPL-X系数和使用神经高斯纹理机制,可以快速生成3D肖像并进行编辑。它还提出了一种迭代数据集更新策略和多模态人脸感知编辑模块,以提高表情质量和保持个性化面部结构。
免费的惊艳虚拟换装工具
Kolors虚拟试妆AI是一种创新的人工智能技术,它允许用户在不实际穿着的情况下虚拟试穿衣服。用户可以通过上传个人照片和所需衣物的图像,AI会生成用户穿着所选服装的真实可视化效果。这项技术不仅为用户带来了便利,使他们能够从舒适的家中尝试不同的风格,而且还通过提供个性化的时尚体验来提高购物体验的准确性和效率。对于服装零售商来说,Kolors虚拟试穿AI提供了对用户试穿数据的深入分析,使他们能够了解市场趋势和消费者偏好,从而优化产品线和营销策略。
使用扩散模型进行图像外延
Diffusers Image Outpaint 是一个基于扩散模型的图像外延技术,它能够根据已有的图像内容,生成图像的额外部分。这项技术在图像编辑、游戏开发、虚拟现实等领域具有广泛的应用前景。它通过先进的机器学习算法,使得图像生成更加自然和逼真,为用户提供了一种创新的图像处理方式。
提升基于拖拽的图像编辑的交互性和速度
InstantDrag是一个优化自由的流程,它通过仅使用图像和拖拽指令作为输入,增强了交互性和速度。该技术由两个精心设计的网络组成:拖拽条件的光流生成器(FlowGen)和光流条件的扩散模型(FlowDiffusion)。InstantDrag通过将任务分解为运动生成和运动条件图像生成,学习了基于真实世界视频数据集的拖拽图像编辑的运动动态。它能够在不需要掩码或文本提示的情况下,快速执行逼真的编辑,这使得它成为交互式、实时应用的有前景的解决方案。
统一的图像生成框架,简化多任务图像生成。
OmniGen是一个创新的扩散框架,它将多种图像生成任务统一到单一模型中,无需特定任务的网络或微调。这一技术简化了图像生成流程,提高了效率,降低了开发和维护成本。
© 2024 AIbase 备案号:闽ICP备08105208号-14