需求人群:
"AnyDressing 主要面向研究人员、设计师和虚拟试穿爱好者。研究人员可以利用该技术进行虚拟试穿相关的学术研究;设计师可以借助该技术进行服装设计的可视化展示;虚拟试穿爱好者可以体验个性化的虚拟试穿效果。"
使用场景示例:
在时尚杂志中展示不同服装搭配的效果
为在线服装商店提供虚拟试穿功能
在电影和游戏制作中生成角色服装的虚拟效果
产品特色:
支持多种服装组合的虚拟试穿
能够根据个性化文本提示生成图像
高精度的服装纹理细节处理
与 LoRA、ControlNet 和 FaceID 等插件兼容
适应各种场景和复杂服装
提供丰富的虚拟试穿结果展示
增强图像的文本-图像一致性
使用教程:
访问 AnyDressing 的官方网站
下载并安装相关的插件和模型
准备目标服装的图像和个性化文本提示
将服装图像和文本提示输入到 AnyDressing 模型中
模型将生成个性化的虚拟试穿图像
查看和保存生成的虚拟试穿效果
浏览量:183
AnyDressing 是一种基于潜在扩散模型的可定制多服装虚拟试穿技术。
AnyDressing 是一种创新的虚拟试穿技术,通过潜在扩散模型实现多服装的个性化定制。该技术能够根据用户提供的服装组合和个性化文本提示生成逼真的虚拟试穿图像。其主要优点包括高精度的服装纹理细节处理、与多种插件的兼容性以及强大的场景适应能力。AnyDressing 的背景信息显示,它是由字节跳动和清华大学的研究团队共同开发的,旨在推动虚拟试穿技术的发展。该产品目前处于研究阶段,尚未定价,主要面向学术研究和效果展示。
一款基于扩散模型的服装试穿技术
TryOnDiffusion是一种创新的图像合成技术,它通过两个UNets(Parallel-UNet)的结合,实现了在单一网络中同时保持服装细节和适应显著的身体姿势及形状变化。这项技术在保持服装细节的同时,能够适应不同的身体姿势和形状,解决了以往方法在细节保持和姿势适应上的不足,达到了业界领先的性能。
基于扩散模型的高保真服装重建虚拟试穿技术
TryOffDiff是一种基于扩散模型的高保真服装重建技术,用于从穿着个体的单张照片中生成标准化的服装图像。这项技术与传统的虚拟试穿不同,它旨在提取规范的服装图像,这在捕捉服装形状、纹理和复杂图案方面提出了独特的挑战。TryOffDiff通过使用Stable Diffusion和基于SigLIP的视觉条件来确保高保真度和细节保留。该技术在VITON-HD数据集上的实验表明,其方法优于基于姿态转移和虚拟试穿的基线方法,并且需要较少的预处理和后处理步骤。TryOffDiff不仅能够提升电子商务产品图像的质量,还能推进生成模型的评估,并激发未来在高保真重建方面的工作。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
多件服装虚拟试穿和编辑技术
M&M VTO是一种混合搭配的虚拟试穿方法,它接受多张服装图片、服装布局的文本描述以及一个人的图片作为输入,输出是这些服装在指定布局下穿在给定人物身上的可视化效果。该技术的主要优点包括:单阶段扩散模型,无需超分辨率级联,能够在1024x512分辨率下混合搭配多件服装,同时保留和扭曲复杂的服装细节;架构设计(VTO UNet Diffusion Transformer)能够分离去噪和人物特定特征,实现高效的身份保留微调策略;通过文本输入控制多件服装的布局,专门针对虚拟试穿任务微调。M&M VTO在定性和定量方面都达到了最先进的性能,并为通过语言引导和多件服装试穿开辟了新的可能性。
无需更换,即可虚拟试穿各种服装。
Kolors 虚拟试穿 AI 是一款利用人工智能技术,通过用户上传的照片来虚拟试穿服装的在线平台。它通过先进的计算机视觉算法和生成对抗网络(GANs)技术,为用户提供逼真的服装试穿效果。该产品不仅改变了传统的试衣体验,还为时尚博主、服装零售商、个人造型师等提供了创新的内容创作和展示方式。它的优势在于能够提供即时的试穿效果,多样化的服装选择,以及真实感的渲染效果,同时保护用户隐私,支持个性化的服装试穿体验。
虚拟试穿产品图像修复模型
Diffuse to Choose 是一种基于扩散的图像修复模型,主要用于虚拟试穿场景。它能够在修复图像时保留参考物品的细节,并且能够进行准确的语义操作。通过将参考图像的细节特征直接融入主要扩散模型的潜在特征图中,并结合感知损失来进一步保留参考物品的细节,该模型在快速推理和高保真细节方面取得了良好的平衡。
一款简单高效的虚拟试穿扩散模型。
CatVTON是一款基于扩散模型的虚拟试穿技术,具有轻量级网络(总共899.06M参数)、参数高效训练(49.57M可训练参数)和简化推理(1024X768分辨率下<8G VRAM)。它通过简化的网络结构和推理过程,实现了快速且高效的虚拟试穿效果,特别适合时尚行业和个性化推荐场景。
虚拟试穿应用,通过WhatsApp发送图片试穿服装
这是一个使用Flask、Twilio的WhatsApp API和Gradio的虚拟试穿模型构建的虚拟试穿原型应用。用户可以通过WhatsApp发送图片来虚拟试穿服装,并将结果发送回用户。该应用利用了Twilio Sandbox进行WhatsApp消息的发送和接收,以及Gradio API来处理虚拟试穿模型,为用户提供了一个创新的在线购物体验。
视频虚拟试穿技术
ViViD是一个利用扩散模型进行视频虚拟试穿的新框架。它通过设计服装编码器提取精细的服装语义特征,并引入轻量级姿态编码器以确保时空一致性,生成逼真的视频试穿效果。ViViD收集了迄今为止规模最大、服装类型最多样化、分辨率最高的视频虚拟试穿数据集。
一种用于虚拟试穿任务的扩散模型,特别在真实世界场景中提高图像保真度和细节保存。
IDM-VTON是一种新型的扩散模型,用于基于图像的虚拟试穿任务,它通过结合视觉编码器和UNet网络的高级语义以及低级特征,生成具有高度真实感和细节的虚拟试穿图像。该技术通过提供详细的文本提示,增强了生成图像的真实性,并通过定制方法进一步提升了真实世界场景下的保真度和真实感。
稳定签名:将水印根植于潜在扩散模型中
Stable Signature是一种将水印嵌入图像中的方法,它使用潜在扩散模型(LDM)来提取和嵌入水印。该方法具有高度的稳定性和鲁棒性,可以在多种攻击下保持水印的可读性。Stable Signature提供了预训练模型和代码实现,用户可以使用它来嵌入和提取水印。
超高质量虚拟试穿,适用于任何服装和人物
Outfit Anyone 是一款超高质量虚拟试穿产品,使用户能够在不真实试穿衣物的情况下尝试不同的时尚款式。通过采用两个流的条件扩散模型,Outfit Anyone 能够灵活处理衣物变形,生成更逼真的效果。它具备可扩展性,可以调整姿势和身体形状等因素,适用于动漫角色到真实人物的图像。Outfit Anyone 在各种场景下的表现突出了其实用性和准备好投入实际应用的程度。
AI试衣镜,上传照片和服装图像,AI即刻呈现试穿效果。
Digimirror是一款利用AI技术实现虚拟试衣的工具,可帮助在线购物者和企业快速预览服装效果,减少退货率。其主要优点包括免费试用、AI分析准确、可一键更换服装,定位于提升在线购物体验。
免费在线AI服装试穿体验
Kolors Virtual Try On是一个利用先进AI技术提供在线虚拟试衣服务的平台。它通过虚拟建模帮助用户在真实环境中可视化服装产品,减少因尺码不合或款式不满意导致的退换货成本。用户可以随时随地试穿服装,做出更明智的购物选择。该平台兼容多个平台,提供个性化推荐,并且支持移动设备使用。Kolors Virtual Try On的隐私政策确保用户数据安全,所有上传的照片在处理后会被安全删除。
AI服装搭配生成器,上传照片即可试穿数不尽时尚服装。
OutfitAI是一款AI服装搭配生成器,利用虚拟试衣技术帮助用户快速浏览各种时尚服装,适用于时尚购物。该产品的主要优点在于提供虚拟试穿功能,节省购物时间并帮助用户发现新款式。定位于时尚爱好者和购物者。
一张图生成多视角扩散基础模型
Zero123++是一个单图生成多视角一致性扩散基础模型。它可以从单个输入图像生成多视角图像,具有稳定的扩散VAE。您可以使用它来生成具有灰色背景的不透明图像。您还可以使用它来运行深度ControlNet。模型和源代码均可在官方网站上获得。
领先的虚拟试穿技术,改变时尚活动和消费者体验。
FASHN 是一种创新的虚拟试穿技术,旨在帮助时尚行业提升客户体验与市场推广效率。通过 FASHN,用户可以快速生成虚拟试穿效果,帮助设计师、品牌及零售商更好地展示服装。该平台支持无需复杂训练即可使用,适合各种规模的时尚企业,助力他们在竞争激烈的市场中脱颖而出。
AI虚拟试衣间,试穿圣诞服装
OutfitAI.co是一个AI驱动的虚拟试衣间,专注于圣诞节服装。用户可以上传照片来试穿不同的圣诞节服装,体验AI技术的魅力。该网站处于早期测试阶段,结果可能不完美,用户可以多次尝试以获取最佳效果。
基于音频条件的潜在扩散模型的唇部同步框架
LatentSync 是由字节跳动开发的一款基于音频条件的潜在扩散模型的唇部同步框架。它能够直接利用 Stable Diffusion 的强大能力,无需任何中间运动表示,即可建模复杂的音视频关联。该框架通过提出的时间表示对齐(TREPA)技术,有效提升了生成视频帧的时间一致性,同时保持了唇部同步的准确性。该技术在视频制作、虚拟主播、动画制作等领域具有重要应用价值,能够显著提高制作效率,降低人工成本,为用户带来更加逼真、自然的视听体验。LatentSync 的开源特性也使其能够被广泛应用于学术研究和工业实践,推动相关技术的发展和创新。
提升户外虚拟试穿效果的模型训练代码库
BooW-VTON是一个专注于提升户外虚拟试穿效果的研究项目,通过无需掩码的伪数据训练来增强虚拟试穿技术。该技术的重要性在于它能够改善在自然环境下服装试穿的真实感和准确性,对于时尚电商和虚拟现实领域具有重要意义。产品背景信息显示,该项目是基于深度学习技术的图像生成模型,旨在解决传统虚拟试穿中服装与人体融合不自然的问题。目前该项目是免费开源的,定位于研究和开发阶段。
AI服装虚拟模特生成器
aoGen是一个专注于生成AI服装虚拟模特的网站,它能够即时生成高质量的服装模特图片,并且成本低廉。该产品通过使用人工智能技术,帮助用户批量创建时尚模特,展示服装,并且与品牌的审美相匹配。它提供了一个全面的电子商务创意解决方案,包括AI模型、图片放大、手部修复、重绘和橡皮擦工具,帮助用户解锁创意,节省成本,提高效率。
一种基于潜在扩散模型的自监督层次化化妆迁移技术
SHMT是一种自监督的层次化化妆迁移技术,通过潜在扩散模型实现。该技术能够在不需要显式标注的情况下,将一种面部妆容自然地迁移到另一种面部上。其主要优点在于能够处理复杂的面部特征和表情变化,提供高质量的迁移效果。该技术在NeurIPS 2024上被接受,展示了其在图像处理领域的创新性和实用性。
基于扩散模型的2D虚拟形象生成框架
Make-Your-Anchor是一个基于扩散模型的2D虚拟形象生成框架。它只需一段1分钟左右的视频素材就可以自动生成具有精确上身和手部动作的主播风格视频。该系统采用了一种结构引导的扩散模型来将3D网格状态渲染成人物外观。通过两阶段训练策略,有效地将运动与特定外观相绑定。为了生成任意长度的时序视频,将frame-wise扩散模型的2D U-Net扩展到3D形式,并提出简单有效的批重叠时序去噪模块,从而突破推理时的视频长度限制。最后,引入了一种基于特定身份的面部增强模块,提高输出视频中面部区域的视觉质量。实验表明,该系统在视觉质量、时序一致性和身份保真度方面均优于现有技术。
高清视频逆问题求解器,使用潜在扩散模型
VISION XL是一个利用潜在扩散模型解决高清视频逆问题的框架。它通过伪批量一致性采样策略和批量一致性反演方法,优化了视频处理的效率和时间,支持多种比例和高分辨率重建。该技术的主要优点包括支持多比例和高分辨率重建、内存和采样时间效率、使用开源潜在扩散模型SDXL。它通过集成SDXL,在各种时空逆问题上实现了最先进的视频重建,包括复杂的帧平均和各种空间退化的组合,如去模糊、超分辨率和修复。
定制化漫画生成模型,连接多模态LLMs和扩散模型。
DiffSensei是一个结合了多模态大型语言模型(LLMs)和扩散模型的定制化漫画生成模型。它能够根据用户提供的文本提示和角色图像,生成可控制的黑白漫画面板,并具有灵活的角色适应性。这项技术的重要性在于它将自然语言处理与图像生成相结合,为漫画创作和个性化内容生成提供了新的可能性。DiffSensei模型以其高质量的图像生成、多样化的应用场景以及对资源的高效利用而受到关注。目前,该模型在GitHub上公开,可以免费下载使用,但具体的使用可能需要一定的计算资源。
AI风格助手,提供智能时尚推荐和虚拟试穿,帮助改变穿衣风格。
DripChecked是一款AI风格助手,利用人工智能技术为用户提供智能时尚推荐、虚拟试穿等功能,帮助用户改变穿衣风格。该产品背景信息丰富,价格适中,定位于个人时尚风格改善。
© 2025 AIbase 备案号:闽ICP备08105208号-14